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Introduction

This book is about a branch of mathematics that helps us understand how things
change over time. Whether you’re studying science, engineering, or math, these
equations are a key tool to make sense of the world around us.

Imagine you want to describe how a population of animals grows, how an
electric circuit behaves, or how a spring moves. Differential equations let us figure
out how things change. They are like a magic wand that helps scientists and
engineers predict the future based on what we know today.

This book is designed for both mathematicians and engineers. If you’re a
mathematics enthusiast, this book will provide you with a foundation in differen-
tial equations, helping you in further mathematics related to calculus. If you’re an
aspiring engineer, this book will serve as a practical guide to the theory of differ-
ential equations. Engineers use differential equations to solve real-world problems
in fields like electrical engineering, mechanical engineering, and civil engineering.
Even though there isn’t any application example, you’ll benefit from the theoretic
part of the book. No matter which path you’re on, this book will help you to make
the most of differential equations in your academic and professional journey.

The book is organized to make learning differential equations easy and acces-
sible as possible. The chapters are:

1. Introduction to Differential Equations: We’ll start with the basics, explaining
what differential equations are.

2. First-Order Equations: We’ll discover how to solve simple differential equa-
tions that involve just one unknown function.

3. Higher-Order Equations: We now move on to more complex equations in-
volving derivatives of higher order.

4. Series Solutions: Some differential equations might not have a solution. We
so learn how to solve tricky equations using series.

5. Laplace Transforms: We will explore a powerful technique for solving equa-
tions differently, making complex problems easier.

6. Systems of Differential Equations: We finally will see how differential equa-
tions can describe interactions between multiple things.



vi Introduction

To this end, we cover the major topics of ordinary differential equations. These
are like the secret codes that help us understand how things change in the world. I
hope the reader gets the most from this book, regardless if they’re mathematicians
or engineers.

I thank Mr. Junwoo Kim for providing a wonderful course on ordinary differ-
ential equations in spring 2023 at Korean Minjok Leadership Academy, without
him the motivation wouldn’t be deep. In addition, I appreciate Yongwook Kim
for proofreading and correcting the book to ensure that the manuscript was error-
free. I also thank Yebin Song for helping me with the English, Seunghyun Lee
for helping me with LATEX, Minsung Ma for the diagram in section 6.6. Finally, I
acknowledge the support and motivation provided by Soeun Kim, Megan Zhang,
Jeonghyeon Seo, Dawon Jeong, and everyone who helped me whilst writing this
book.

Joshua Im
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Suppose you are modeling something in nature. You find out that the change of
the value can be represented by an equation. This is where differential equation
starts.

1.1
What is a Differential Equation?

Definition 1.1.1: Differential Equation

A differential equation is an equation involving functions’ derivatives.

For example, we know that taking the derivative of speed with respect to time
equals to velocity. An equation with speed and velocity is one kind of differential
equation.

There are lots of types of differential equations, but we first can classify those
by types. The two types of differential equations are ordinary differential equa-
tions and partial differential equations. An ordinary differential equation is an
equation with only derivatives of a single variable. In the other hand, equations in-
cluding partial derivatives are called partial differential equations. This book
is focused on ordinary differential equations.

Example 1
Classify these three equations as ordinary differential equations or partial dif-
ferential equations.

1. y′ = ex

2.
dy

dx
+ xy = y2

3.
∂z

∂x
+

∂z

∂y
= xy2

Solution Equations 1 and 2 are ordinary differential equations because they only
contain derivatives of single variables. However, equation 3 is a partial differential
equation because z is differentiated by both x and y.

Differential equations can also be classified by order.

Definition 1.1.2: Order of a Differential Equation

An order of a differential equation is the order of the highest derivative out
of the derivatives in the equation.

For example, the differential equation
d3y

dx3
+y = 1 has order 3, and the equation

∂z

∂x
+

∂z

∂y
= 1 has order 1.
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Definition 1.1.3: Linear Differential Equation

A linear differential equation is an equation such that the coefficient of
y(k) for k = 1, 2, . . . is independent of y. It can be expressed as

a(n)(x)y
(n) + an−1(x)y

(n−1) + · · ·+ a1(x)y
′ + a0y = g(x),

where a0(x), a1(x), . . . an(x) are functions solely dependent on x.

Nonlinear differential equations are simply differential equations that are
not linear. If the coefficient of y(k) contains a function of y for some k, then the
equation is nonlinear.

Example 2
Classify the following equations as linear and nonlinear.

1. sin ex
d2y

dx2
+ cosx

dy

dx
= −xex

2. yy′′ + xy′ = x

3. x2y′′ + (1− x2)y = xy

Solution Equation 1 is linear because the coefficients of y′′, y′, and y are functions
of x. Equation 2 is nonlinear because the coefficient of the term y′′ is y. Equation
3 is linear because the equation can be rewritten as x2y′′ + (1 − x2)y′ − xy = 0,
which is linear.

Solutions to Differential Equations
Definition 1.1.4: Solution

A function f is a solution of a differential equation if it satisfies the differ-
ential equation F (x, y, y′, . . . , y(n) = 0.

Solutions may not satisfy the differential equation in all real numbers. Hence,
there needs to be clarification in the interval that the solution actually satisfies
the differential equation.

Definition 1.1.5: Interval of Definition

The interval of definition of a solution is the interval that the solution
function satisfies the differential equation.

Example 3
Verify that y = e3x is a solution of the differential equation y′′ − 6y′ + 9y = 0

on the interval I = (−∞,∞).
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Solution
(e3x)′′ − 6(e3x)′ + 9(e3x) = 9e3x − 18e3x + 9e3x = 0.

In the example above, some might have noticed that y = 0 is a solution besides
y = e3x. Clearly, e3x ̸= 0. The solution that is zero in all real numbers is called
the trivial solution.

Definition 1.1.6: Trivial Solution

The trivial solution of a differential equation is a solution f = 0 for all real
numbers that satisfy the differential equation.

Definition 1.1.7: Solution Curve

The solution curve of a differential equation is the graph of a solution f .

The solution curve of a differential equation that has order n should be con-
tinuous, and should be differentiable at least n times.

Definition 1.1.8: Implicit Solution

A relation G(x, y) = 0 is an implicit solution if it provides at least one
solution to the differential equation.

Definition 1.1.9: Explicit Solution

An explicit solution to a differential equation is a solution of the form
y = f(x), where f is a function solely dependent on x.

Example 4
Consider the differential equation

dy

dx
= −x

y
.

The relation x2 + y2 = 4 is an implicit solution because y = −
√
4− x2 is a

solution to the differential equation, and it also satisfies the relation x2+y2 = 4.

Family of Solutions
Notice that from the example above, x2 + y2 = c can be an implicit solution for
an arbitrary positive constant c. This shows that there could be infinitely many
solutions to differential equations. The set of solutions containing a constant is
called a family of solutions.



1.1. What is a Differential Equation? 5

Definition 1.1.10: Family of Solutions

For a constant c, the relation G(x, y, c) = 0 is called a one-parameter
family of solutions. For constants c1, c2, . . ., cn, the relation
G(x, y, c1, c2, . . . , cn) = 0 is called a n-parameter family of solutions.

Definition 1.1.11: Particular Solution

A solution of a differential equation that doesn’t contain any parameters is
called a particular solution.

Example 5
Verify that y = c1x

4 + c2x
−1 is a solution to the differential equation

x2y′′ − 2xy′ − 4y = 0,

where c1 and c2 are parameters.

Solution

x2 d
2y

dx2
(c1x

4 + c2x
−1)− 2x

dy

dx
(c1x

4 + c2x
−1)− 4

d2y

dx2
(c1x

4 + c2x
−1)

= c1(12x
4 − 8x4 − 4x4) + c2(2x

−1 + 2x−1 − 4x−1)

= 0.

Usually, all solutions of a differential equation will be in the family of solutions,
but there may be some solutions that are not in the family of the solutions. For
example, the differential equation xy′ = y has y = cx2 as a solution, but consider
the solution

y(x) =

{
x2 x ≥ 0

−x2 x < 0.

This solution can not be expressed as y = cx2. Such solutions are called singular
solutions.

Definition 1.1.12: Singular Solution

An extra solution that is not in the family of solution is called a singular
solution.
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1.2
Initial-Value Problems

Definition 1.2.1: Initial-Value Problems

A differential equation

dny

dxn
= f(x, y, y′, . . . , y(n−1))

with initial conditions

y(x0) = c0, y′(x0) = c1, . . . , y(n−1)(x0) = cn−1

is called an initial-value problem.

For example, the equation

dy

dx
= f(x, y), y(x0) = c0

is a 1st-order initial-value problem.

Example 1
Recall from Example 5 from section 1.1 that y = c1x

4 + c2x
−1 is a solution to

the differential equation

x2y′′ − 2xy′ − 4y = 0.

Solve the initial-value problem

x2y′′ − 2xy′ − 4y = 0, y(1) = 3, y′(1) = 2.

Solution Since y(1) = 3, c1 + c2 = 3. Differentiating y = c1x
4 + c2x

−1, we get
y′ = 4c1x

3 − c2x
−2. Therefore, y′(1) = 4c1 − c2 = 2. Solving the system of linear

equations

c1 + c2 = 3

4c1 − c2 = 2

gives c1 = 1, c2 = 2, and hence the solution to the initial value problem is

y(x) = x4 + 2x−1.
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Existence and Uniqueness
For initial-value problems, two fundamental questions arise: existence and unique-
ness. Does the solution exist, and if there exists a solution, is it unique? The
following theorem doesn’t totally clarify the question but gives you an idea of it.

Theorem 1.2.1: Picard–Lindelöf theorem

Let R be a rectangular region defined by R = [a, b] × [c, d] that contains
(x0, y0). If f(x, y) is continuous on R and has bounded first partial derivative
with respect to y on R, that is, if ∂f/∂y is bounded on a ≤ x ≤ b, then the
initial-value problem

dy

dx
= f(x, y), y(x0) = y0

has a unique solution on the interval (x0 − ϵ, x0 + ϵ).

This theorem guarantees a unique solution locally, but the condition is not
accessible. We state a similar theorem which is more useful.

Theorem 1.2.2: Existence and Uniqueness Theorem

Let R be a rectangular region defined by R = [a, b] × [c, d] that contains
(x0, y0). If f(x, y) and ∂f/∂y is continuous on R, then the initial-value
problem

dy

dx
= f(x, y), y(x0) = y0

has a unique solution on the interval (x0 − ϵ, x0 + ϵ).

Example 2
Prove that y = x6 is a unique solution to the initial-value problem

dy

dx
= 6xy2/3, y(1) = 1

near x = 1.

Solution First, y = x6 is a solution to the differential equation dy/dx = 6xy2/3

because
dy

dx
= 6x5 = 6x · x6·2/3.

Since f(x, y) = 6xy2/3 and ∂f/∂y = 4xy−1/3 is continuous near x = 1, y = x6 is
the unique solution to the initial-value problem.

Notice that the converse may not be true: that is, having a unique solution
near (x0, y0) doesn’t guarantee that f(x, y) and ∂f/∂y is continuous near (x0, y0).
Note that this theorem only guarantees a unique solution near x0. This means that
the solution to the initial-value problem may not have a unique solution globally.
One example is stated below.



8 Chapter 1. Introduction to Differential Equations

Example 3
Verify that

y(x) =

{
0 x < 0

x6 x ≥ 0

is a solution to the initial-value problem

dy

dx
= 6xy2/3, y(1) = 1.

Solution For x ≥ 0, we have

dy

dx
= 6x5 = 6x · x6·2/3.

For x < 0, we have dy/dx = 6xy2/3 = 0. Therefore, y(x) is a solution to the
initial-value problem.

The solution given in example 3 is clearly different from the solution given in
example 2. They are the same near x = 1, but different globally. Keep in mind that
the existence and uniqueness theorem only guarantees a unique solution locally.

1.3
Direction Fields

Consider a first-order equation

dy

dx
= f(x, y).

Then, at a point (x0, y0), f(x0, y0) can be interpreted as the slope of the tangent
line of the solution at (x0, y0). Since the value of f(x, y) changes, the slope of the
tangent line of the solution will change as (x0, y0) changes. The diagram where all
the slopes are drawn for each point is called a direction field.

Example 1
Consider a first-order differential equation

dy

dx
= −x

y
.

For each (x0, y0), the slope of the tangent line of the solution is equal to −x0/y0.
The direction field is drawn below.
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y

x

dy

dx
= −x/y

Note that the direction field is not drawn for y = 0 since it is impossible to
divide by zero.

With direction fields, we can find how the solution behaves. For the example
above, it seems like the slopes form circles. This is because that x2 + y2 = c is
a solution for a constant c. One can guess the form of the family of solutions
with the direction field. If there is an initial condition, then the solution can be
approximated. For example, if there was an initial condition y(4) = 3 to the
example above, the implicit solution will be x2 + y2 = 25.

y

x

See that the solution curve exactly fits with some elements in the direction field.
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This chapter covers about first-order differential equations. There are several kinds
of first-order differential equations that can be solved analytically.

2.1
Separable Equations

Definition 2.1.1: Separable Equation

A first-order differential equation is separable if it can be expressed as

dy

dx
= g(x)h(y).

The equation is called separable because dy/dx = f(x, y) can be separated as a
multiplication of two functions, one depending only on x, and the other depending
only on y.

Solving Separable Equations
The method for solving separable equations is not difficult. First, change

dy

dx
= g(x)h(y)

to
1

h(y)
dy = g(x) dx.

Then, the left-hand side is a function solely depending on y, and the right-hand
side is a function solely depending on x. Integrating both sides gives∫

1

h(y)
dy =

∫
g(x) dx and

H(y) + c1 = G(x) + c2

where H(y) and G(x) are antiderivatives of 1/h(y) and g(x), respectively. Sub-
tracting c1 in both sides gives you H(y) = G(x) + c, where c = c2 − c1.

Example 1
Solve y dx+ (1 + x2) dy = 0.

Solution Since dy/dx = −y/(1 + x2) = −y · 1/(1 + x2), the equation is separable.
Rewriting the equation gives

1

y
dy = − 1

1 + x2
dx,
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and by integrating both sides, we get

ln |y| = − tan−1 x+ c1.

Therefore,

|y| = e− tan−1 x+c1

= ec1 · e− tan−1 x

= ce− tan−1 x

where ec1 = c.

Example 2

Solve
1

3
x dx+

1

3
y dy = 0.

Solution Since dy/dx = −x/y, the equation is separable. Rewriting the equation
gives

x dx = −y dy∫
x dx = −

∫
y dy

1

2
x2 = −1

2
y2 + c1

and therefore we get the implicit solution x2 + y2 = c where 2c1 = c. The explicit
solution is

y = ±
√
c− x2.

Notice that x can only be defined where c− x2 ≥ 0, so the interval of definition is
(−

√
c,
√
c). x is not defined at −

√
c or

√
c because y(x) should be differentiable.

Example 3
Solve (1 + x3) dy − x2y dx = 0, y(0) = 2.

Solution The equation is separable. Rewriting the equation gives

x2

1 + x3
dx =

1

y
dy

∫
x2

1 + x3
dx =

∫
1

y
dy

1

3
ln |1 + x3|+ c1 = ln |y|.
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Then,

|y| = e
1
3 ln |1+x3|+c1

= c2 · e
1
3 ln |1+x3|

= c2 · |1 + x3|1/3,

and y = c|1+ x3|1/3, where c2 = ec1 , and c = ±c2. Since y(0) = 2, c · |1+ 03|1/3 =

c = 2. Therefore, we get the solution

y = 2|1 + x3|1/3.

Homogeneous Equations of the Same Degree
Definition 2.1.2: Homogeneous Function of Degree n

If a function f satisfies the property

f(tx, ty) = tnf(x, y),

we say that f is homogeneous of degree n.

For example, f(x, y) = xy is homogeneous of degree 2 because f(tx, ty) = t2xy.
This term homogeneous is different with the term where the constant function is
zero. Homogeneous equations can be solved by substitution.

Definition 2.1.3: Homogeneous Equation of the Same Degree

A first order differential equation is homogeneous of the same degree
where it is of the form

f(x, y) dx+ g(x, y) dy = 0

and f(x, y) and g(x, y) are homogeneous of the same degree.
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Solving Homogeneous Equations of the Same Degree
Let x/y = u so x = yu. Then, f(x, y) = f(yu, y) = ynf(u, 1), and g(x, y) =

yng(u, 1). Since x = yu, dx = y du+ u dy. This gives

ynf(u, 1) dx+ yng(u, 1) dy = 0

f(u, 1) dx+ g(u, 1) dy = 0

f(u, 1) (y du+ u dy) + g(u, 1) dy = 0

yf(u, 1) du+
(
uf(u, 1) + g(u, 1)

)
dy = 0

f(u, 1)

uf(u, 1) + g(u, 1)
du = −1

y
dy,

which is a separable equation of y and u. The procedure after this is the same
with other separable equations. This process can also be done by the substitution
y/x = v, or y = xv. Either way will result in a separable equation, so there is
no need to worry which substitution you should make. Go for the one that looks
simpler.

Example 4
Solve (x3 − y3) dx+ xy2 dy = 0.

Solution Since x3 − y3 and xy2 are homogeneous of the same degree, we use the
substitution x = yu to change the equation to a separable equation.

y3(u3 − 1) dx+ y3u dy = 0

(u3 − 1) dx+ u dy = 0

(u3 − 1)(y du+ u dy) + u dy = 0

(u3 − 1)y du+ u4 dy = 0

u3 − 1

u4
du = −1

y
dy.
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Integrating both side leads to the solution∫
u3 − 1

u4
du = −

∫
1

y
dy

lnu+
1

3
u−3+ = − ln y + c1

ln
x

y
+

y3

3x3
= − ln y + c1

lnx+
y3

3x3
= c1

y3 = x3(c− 3 lnx)

y = x
3
√
c− 3 lnx,

where c = 3c1.

Reduction to Separable Form
There are some other substitutions that change the equation into a separable form.
Consider the equation

dy

dx
= f(ax+ by + c),

where a, b, and c are constants. Substituting u = ax+ by + c gives

dy

dx
= f(u).

Since

du

dx
= a+ b

dy

dx
,

dy

dx
=

1

b

(
du

dx
− a

)
and the equation can be changed into

1

b

(
du

dx
− a

)
= f(u)

du

dx
= a+ bf(u),

which is separable, and can be solved by our usual method of solving separable
equations.
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Example 5

Solve
dy

dx
= (2x+ 3y − 6)2 +

1

3
.

Solution Let u = 2x+ 3y − 6. Then,

du

dx
= 2 + 3

dy

dx

dy

dx
=

1

3

(
du

dx
− 2

)
,

so the equation can be changed into

1

3

(
du

dx
− 2

)
= u2 +

1

3
,

which is

du

dx
= 3u2 + 3

1

u2 + 1
du = 3 dx.

So the equation is separable. Integrating,∫
1

u2 + 1
du = 3

∫
dx

arctanu = 3x

Substituting u = 2x+ 3y − 6 back to the equation yields

arctan(2x+ 3y − 6) = 3x+ c

2x+ 3y − 6 = tan(3x+ c),

Therefore the solution is

y =
1

3
(−2x+ tan(3x+ c) + 6).
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2.2
Exact Equations

Recall the definition of total differential. If z(x, y) is a function with two variables
such that it has continuous partial derivatives, its total differential is defined as

dz =
∂z

∂x
dx+

∂z

∂y
dy.

If z(x, y) = c, where c is a constant, then dz = 0. This is where exact equations
start.

Definition 2.2.1: Exact Equation

A first-order differential equation of the form

M(x, y) dx+N(x, y) dy = 0

is called to be exact if the left-hand side is the total differential of some
function z(x, y). That is, if there exists a function z(x, y) such that

∂z

∂x
= M(x, y) and

∂z

∂y
= N(x, y).

Then, how do you know if a first-order differential equation is exact? The
theorem below answers to the question.

Theorem 2.2.1: Determining Exact Equations

Consider a first-order differential equation

M(x, y) dx+N(x, y) dy = 0,

where M(x, y) and N(x, y) have continuous first partial derivatives. The
equation is exact if and only if

∂M

∂y
=

∂N

∂x
.

Proof. (⇒) Since the equation is exact, there exists a function z(x, y) such that

∂z

∂x
= M(x, y) and

∂z

∂y
= N(x, y).

Since M(x, y) and N(x, y) have continuous partial derivatives,
∂M

∂y
=

∂2z

∂x∂y
is
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continuous, and
∂N

∂x
=

∂2z

∂y∂x
is continuous. Therefore,

∂M

∂y
=

∂N

∂x

because
∂2z

∂x∂y
=

∂2z

∂y∂x

by Clairaut’s Theorem.

(⇐) We claim that there exists a function z(x, y) if ∂M/∂y = ∂N/∂x. Such func-
tion should have M(x, y) as its first partial derivative with respect to x. Therefore,

z(x, y) =

∫
M(x, y) dx+ g(y),

where g(y) is an arbitrary function of y. Therefore, we can guarantee that there
exists a function z if there exists a function g(y) which is independent to x. Since
z(x, y) should have N(x, y) as its first partial derivative with respect to y,

∂z

∂y
=

∂

∂y

∫
M(x, y) dx+ g′(y) = N(x, y), and

g′(y) = N(x, y)− ∂

∂y

∫
M(x, y) dx.

We now claim that g(y) is a function independent to x. Taking partial derivatives
with respect to x,

∂

∂x

(
N(x, y)− ∂

∂y

∫
M(x, y) dx

)
=

∂N

∂x
− ∂

∂x

(
∂

∂y

∫
M(x, y) dx

)

=
∂N

∂x
− ∂

∂y

(
∂

∂x

∫
M(x, y) dx

)
=

∂N

∂x
− ∂M

∂y
= 0.

So there exists a function g(y) that is independent to x. Therefore, there exists a
function z(x, y) such that

∂z

∂x
= M(x, y) and

∂z

∂y
= N(x, y). ■

Solving Exact Equations
The goal of solving an exact equation

M(x, y) dx+N(x, y) dy = 0
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is to find a function z(x, y) such that

∂z

∂x
= M(x, y) and

∂z

∂y
= N(x, y)

so that we can conclude that the solution is z(x, y) = c, where c is a constant.
Since ∂z/∂x = M(x, y),

z(x, y) =

∫
M(x, y) dx+ g(y),

where g(y) is a solution solely dependent on y. Taking the partial derivative with
y gives

∂

∂y

∫
M(x, y) dx+ g′(y) = N(x, y),

which gives the formula of g′(y), with knowing
∫
M(x, y) and N(x, y). Taking the

antiderivative gives g(y), and one can find z(x, y). The method can also be done
the other way, starting with integrating with respect to y first. The solution to
the differential equation is

z(x, y) = c.

Example 1
Solve ex sin exy2 dx− 2 cos exy = 0.

Solution In this equation, M(x, y) = ex sin exy2, and N(x, y) = −2 cos exy. Since

∂M

∂y
= 2ex sin ex =

∂N

∂x
,

the equation is exact. Therefore, we need to find z(x, y) such that

∂z

∂x
= M(x, y) and

∂z

∂y
= N(x, y).

Integrating N(x, y) = −2 cos exy with respect to y gives

z(x, y) =

∫
N(x, y) dy + f(x)

= −2

∫
cos exy dy + f(x)

= − cos exy2 + f(x).
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Since ∂z/∂x = M(x, y),

∂z

∂x
=

∂

∂x

(
− cos exy2 + f(x)

)
= ex sin exy2 + f ′(x) = ex sin exy2,

which gives f ′(x) = 0, and f(x) = c1. Therefore, the solution is z(x, y) = c, which
is

− cos exy2 = c.

Example 2
Solve (x2 − 2xy) dx+ (y3 − x2) dy = 0, y(0) = 2.

Solution In this equation, M(x, y) = x2 − 2xy, and N(x, y) = y3 − x2. Since

∂M

∂y
= −2x =

∂N

∂x
,

the equation is exact. Therefore, we need to find z(x, y) such that

∂z

∂x
= M(x, y) and

∂z

∂y
= N(x, y).

Integrating M(x, y) = x2 − 2xy with respect to x gives

z(x, y) =

∫
N(x, y) dx+ g(y)

=

∫
(x2 − 2xy) dx+ g(y)

=
1

3
x3 − x2y + g(y).

Since ∂z/∂y = N(x, y),

∂z

∂y
=

∂

∂y

(
1

3
x3 − x2y + g(y)

)
= −x2 + g′(y) = y3 − x2,

which gives g′(y) = y3, and g(y) = 1
4y

4+ c1. Therefore, the solution is z(x, y) = c,
which is

1

3
x3 − x2y +

1

4
y4 = c.

With the initial condition y(0) = 2, we get c = 4, so the solution of the equation
is

1

3
x3 − x2y +

1

4
y4 = 4.
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Reduction to Exact Form
There are some equations that look like exact, but actually they’re not. For some
cases, nonexact equations can be changed to exact equations by multiplying some
function to both sides of the equations! For example, the equation

4y2 dx+ 2xy dy = 0

is not exact because ∂M/∂y = 8y, and ∂N/∂x = 2y, so ∂M/∂y ̸= ∂N/∂x. How-
ever, multiplying the integrating factor x3 gives

4x3y2 dx+ 2x4y dy = 0,

and this is exact because ∂M/∂y = 8x3y = ∂N/∂x. Then, how do we find the
integrating factor? Suppose there exists an integrating factor u(x, y) which makes

u(x, y)M(x, y) dx+ u(x, y)N(x, y) dy = 0

to an exact equation. Then, by theorem 2.2.1,

∂

∂y
u(x, y)M(x, y) =

∂

∂x
u(x, y)N(x, y)

uyM + uMy = uxN + uNx

(My −Nx)u = uxN − uyM

Assume that u is a function of only one variable. That is, u only depends on either
x or y. If u only depends on x, then since uy = 0 and ux = du/dx,

(My −Nx)u = uxN

du

dx
=

My −Nx

N
u.

Notice that (My−Nx)/N is independent u, hence the equation above is separable.
Solving the equation for u gives

1

u
du =

My −Nx

N
dx

ln |u| =
∫

My −Nx

N
dx

u = e
∫
(My−Nx)/N dx.
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Since the right-hand side of the original equation is 0, the sign of u doesn’t matter,
and absolute value can be ignored. If u only depends on y, then

(My −Nx)u = −uyM

du

dy
=

Nx −My

M
u.

Since the equation is separable,

1

u
du =

Nx −My

M
dy

ln |u| =
∫

Nx −My

M
dy

u = e
∫
(Nx−My)/M dy.

Therefore, nonexact first-order differential equations can be changed to exact equa-
tions if (My −Nx)/N depends only on x, or if (Nx −My)/M depends only on y.
One should check if the equation is exact first, before looking for the integrating
factor.

Example 3
Solve (x2 + y2) dx+ xy dy = 0.

Solution Let M(x, y) = x2 + y2, and N(x, y) = xy. The equation is not exact
because My = 2y and Nx = y, and My ̸= Nx. However, since

My −Nx

N
=

2y − y

xy
=

1

x

which is a function only depending on x, there exists an integrating factor

u(x, y) = e
∫
(1/x)dx = x.

Multiplying x to the equation gives

(x3 + xy2) dx+ x2y dy = 0,

which is exact. Solving for z(x, y),

z(x, y) =

∫
(x2y) dy + f(x)

=
1

2
x2y2 + f(x).
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Since ∂z/∂x = x3 + xy2,

∂z

∂x
=

∂

∂x

(
1

2
x2y2 + f(x)

)
= xy2 + f ′(x) = x3 + xy2,

which gives f ′(x) = x3, and f(x) = 1
4x

4+c1. Therefore, the solution is z(x, y) = c,
which is

1

2
x2y2 +

1

4
x4 = c.

2.3
Linear Equations

Definition 2.3.1: Linear Equation

A first-order differential equation of the form

p(x)
dy

dx
+ q(x)y = r(x)

is called to be linear.

First-order differential equations that cannot be expressed in this form are called
nonlinear equations. It is also called homogeneous if r(x) = 0 in the formula above.
There are two ways to solve linear equations. Both are stated.

Variation of Parameter Method
First, change the coefficient of dy/dx to 1. This gives

dy

dx
+ f(x)y = g(x)

where f(x) = q(x)/p(x) and g(x) = r(x)/p(x). The idea is to find a solution to
the differential equation

dy

dx
+ f(x)y = 0,

which is called the complementary solution, and a solution to the differential equa-
tion

dy

dx
+ f(x)y = g(x),

which is called the particular solution. They are denoted yc and yp, respectively.
This will be explained later, in section 3.1. Then, the general solution is yc + yp
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because

d

dx
(yc + yp) + f(x)(yc + yp) =

(
d

dx
yc + f(x)yc

)
+

(
d

dx
yp + f(x)yp

)
= 0 + g(x) = g(x).

To find the complementary solution, we need to find the solution of the equation

dy

dx
+ f(x)y = 0.

Notice that the equation above is separable. Solving for y gives

dy

dx
= −f(x)y

1

y
dy = −f(x) dx

ln |y| = −
∫

f(x) dx+ c

y = ce−
∫
f(x) dx,

which is the complementary solution. Let e−
∫
f(x) dx = y′(x).

For the particular solution, we will use the variation of parameter method,
which is a process for finding u(x) where we assume yp(x) = u(x)y′(x). This is
explained later in section 3.6. Substituting yp into the equation,

d

dx
yp + f(x)yp = g(x)

d

dx
(uy′) + f(x)(uy′) = g(x)

u
d

dx
y′ + y′

d

dx
u+ f(x)uy′ = g(x)

u

(
d

dx
y′ + f(x)y′

)
+ y′

d

dx
u = g(x)

The first part of the left-hand side is 0 since y′ is a complementary solution.
Therefore, we get

y′
du

dx
= g(x),
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which is separable. Solving the separable equation gives

du =
g(x)

y′
dx∫

du =

∫
g(x)

y′
dx

u(x) =

∫
g(x)

y′
dx.

Therefore, the general solution to the linear equation is

y = yc + yp

= ce−
∫
f(x) dx + e−

∫
f(x) dx

∫
g(x)e

∫
f(x) dx dx.

Integrating Factor Method
The idea of the integrating factor method is this: we want to find an integrating
factor u(x) so that the whole equation multiplied by the integrating factor is the
derivative of u(x)y. To find such u(x), first multiply the whole equation by u(x),
changing the equation to

u(x)
dy

dx
+ f(x)u(x)y = u(x)g(x).

We want the left-hand side to be the derivative of u(x)y. That is,

d

dx
(u(x)y) = y

du

dx
+ u(x)

dy

dx

= u(x)
dy

dx
+ f(x)u(x)y,

which gives a separable equation

du

dx
= f(x)u(x).
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Solving for u gives

1

u
du = f(x) dx∫

1

u
du =

∫
f(x) dx

ln |u| = e
∫
f(x) dx

u(x) = c1e
∫
f(x) dx.

We only need one integrating factor, so we fix c1 = 1 to make calculations simple.
To find the solution, since

d

dx
(u(x)y) = u(x)

dy

dx
+ f(x)u(x)y = u(x)g(x),

we can find u(x)y by taking the integral.

u(x)y =

∫
u(x)g(x) dx+ c

Thus, the general solution is

y =
1

u(x)

(∫
u(x)g(x) + c

)
where

u(x) = e
∫
f(x) dx.

Example 1

Solve
dy

dx
+ y = e3x.

Solution The differential equation is linear, where f(x) = 1 and g(x) = e3x. The
integrating factor is

u(x) = e
∫
f(x) dx

= e
∫
1 dx = ex.
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Hence, the solution is

y = e−x

(∫
ex · e3x + c

)
= e−x

∫
e4x dx+ ce−x

= e−x · 1
4
e4x + ce−x

=
1

4
e3x + ce−x.

Example 2

Solve x
dy

dx
+ 4y = x3 − x, y(1) = −37

35
.

Solution The differential equation is linear because dividing x to both sides gives

dy

dx
+

4

x
y = x2 − 1.

Notice that f(x) = 4/x is continuous on intervals (−∞, 0) and (0,∞). Since the
initial value is at 1, we solve the equation in the interval (0,∞). The integrating
factor is

u(x) = e
∫
f(x) dx

= e
∫
(4/x) dx

= e4 ln |x| = x4.

Therefore, the general solution is

y = x−4

(∫
x4(x2 − 1) + c

)
= x−4

∫
(x6 − x4) dx+ cx−4

= x−4

(
1

7
x7 − 1

5
x5

)
+ cx−4

=
1

7
x3 − 1

5
x+ cx−4.

With the initial value y(0) = −37/35, we get c = −1. Hence, the solution for the
equation in the interval (0,∞) is

y =
1

7
x3 − 1

5
x− x−4.
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Reduction to Linear Form
Some nonlinear equations can be reduced to linear form by substituting. One of
them are called the Bernoulli’s equation.

Definition 2.3.2: Bernoulli’s Equation

A first-order nonlinear differential equation of the form

dy

dx
+ f(x)y = g(x)yα,

where α is any real number, is called Bernoulli’s equation.

Let u = y1−α. Then du/dx = (1−α)y−αdy/dx. Substituting this to Bernoulli’s
Equation gives

1

1− α
· yα du

dx
+ f(x)y = g(x)yα.

Dividing both sides by yα, the equation is changed into

1

1− α

du

dx
+ f(x)y1−α = g(x),

which is linear because it is equivalent to

du

dx
+ (1− α)f(x)u = (1− α)g(x).

Example 3

Solve
dy

dx
+

y

x
= x2y3.

Solution The equation is Bernoulli’s Equation, where α = 3. We make the sub-
stitution u = y−2. Then, du/dx = −2y−3dy/dx. Substituting to the original
equation gives

−1

2
y3 · du

dx
+

y

x
= x2y3

−1

2

du

dx
+

1

x
y−2 = x2

du

dx
− 2

x
u = −2x2.
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The integrating factor is

µ(x) = e
∫
f(x) dx

= e−
∫
(2/x) dx

= e−2 ln |x| = x−2.

Therefore, we get

u = x2

(∫
x−2(−2x2) + c

)
= −2x2

∫
dx+ cx2

= −2x3 + cx2.

Since u = y−2 = −2x3 + cx2, solving for y gives

y =
1√

−2x3 + cx2

=
1

x
√
−2x+ c

.



Chapter 3

Higher-Order Equations
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This chapter mainly covers linear and nonlinear equations with higher orders.

3.1
Theory of the General Solution

Recall the n-th order linear initial-value problem

any
(n) + an−1y

(n−1) + · · ·+ a1y
′ + a0y = f(x)

y(x0) = y0, y
′(x0) = y1, · · · , y(n−1)(xn−1) = yn−1.

This chapter, in general, focuses on this form of equations. Recall that there was
a theorem about the existence and uniqueness of solutions in section 1.2. There is
a similar theorem, stating the existence and uniqueness of a solution.

Theorem 3.1.1: Existence and Uniqueness of a Solution

Let an(x), an−1(x), . . ., a0(x) be continuous functions on an interval I, and
let an(x) ̸= 0, and x0 ∈ I. Then, the solution to the differential equation

any
(n) + an−1y

(n−1) + · · ·+ a1y
′ + a0y = f(x)

y(x0) = y0, y
′(x0) = y1, · · · , y(n−1)(xn−1) = yn−1

exists, and it is unique.

Solving linear differential equations is divided into two parts-the homogeneous
equation, and the nonhomogeneous equation.

Homogeneous Equations
Recall that an equation is homogeneous if f(x) = 0. That is, if a differential
equation is of the form

any
(n) + an−1y

(n−1) + · · ·+ a1y
′ + a0y = 0.

Homogeneous equations usually have solutions with parameters if they do not have
initial conditions.
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Theorem 3.1.2: Superposition Principle - Homogeneous Equations

Let y1, y2, . . ., yk be the solutions to the differential equation

any
(n) + an−1y

(n−1) + · · ·+ a1y
′ + a0y = 0.

Then, the linear combination

y = c1y1 + c2y2 + · · ·+ ckyk

is a solution to the differential equation above, where c1, c2, . . ., ck are
constants.

One question may arise: What if yi can be expressed as a linear combination of
other solutions? This is resolved by linear independence.

Definition 3.1.1: Linear Independence and Dependence

We say that n functions f1, f2, . . ., fn are linear dependent is there are
constants c1, c2, . . ., cn such that

c1f1 + c2f2 + · · ·+ cnfn = 0.

If the only constants that satisfy the equation

c1f1 + c2f2 + · · ·+ cnfn = 0

is c1 = c2 = · · · = cn = 0, then we say that f1, f2, . . ., fn are linear
independent.

For example, f1(x) = cos2 x, f2(x) = sin2 x, and f3(x) = 1 are linear dependent
because f1(x) + f2(x) − f3(x) = cos2 x + sin2 x − 1 = 0, but f1(x) = x and
f2(x) = |x| are linear independent because one function cannot be a constant
multiple of another.

Definition 3.1.2: Wronskian

If the functions f1, f2, . . ., fn have at least n − 1 derivatives, then the
determinant of the matrix∣∣∣∣∣∣∣∣∣

f1 f2 · · · fn
f ′
1 f ′

2 · · · f ′
n

...
...

. . .
...

f
(n−1)
1 f

(n−1)
2 · · · f

(n−1)
n

∣∣∣∣∣∣∣∣∣
is called the Wronskian of the functions f1, f2, . . ., fn and is denoted by
W (f1, f2, . . . , fn).
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Lemma

If there exists x0 ∈ I such that W (f1, f2, . . . , fn)(x0) ̸= 0, then f1, f2, . . .,
fn are linearly independent.

Proof. We prove the contraposition. Suppose f1, f2, . . ., fn are linearly dependent
functions that are at least n − 1 times differentiable. Then, for some k1, k2, . . .,
kn that are not all zero,

k1f1 + k2f2 + · · ·+ knfn = 0.

Taking the derivative n− 1 times, we get

k1f1 + k2f2 + · · ·+ knfn = 0

k1f
′
1 + k2f

′
2 + · · ·+ knf

′
n = 0

...

k1f
(n−1)
1 + k2f

(n−1)
2 + · · ·+ knf

(n−1)
n = 0.

This is a linear system
f1 f2 · · · fn
f ′
1 f ′

2 · · · f ′
n

...
...

. . .
...

f
(n−1)
1 f

(n−1)
2 · · · f

(n−1)
n



k1
k2
...
kn

 =


0

0
...
0

 .

Since k1, k2, . . ., kn are not all zero, there exists a nontrivial solution for every
x in (−∞,∞). Therefore, the determinant of the coefficient matrix, which is the
Wronskian, should be zero. ■

The converse is not true: for example, if f1(x) = x2, and f2(x) = x|x|, then
even though W (f1, f2)(x) = 0, f1 and f2 are linear independent. However, if we
let f1, f2, . . ., fn be n solutions to the n-th order linear differential equation, the
converse is also true.
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Theorem 3.1.3: Existence of Linear Independent Solutions

If y1, y2, . . ., yn are n solutions to the n-th order linear differential equation

an(x)y
(n) + an−1(x)y

(n−1) + · · ·+ a1(x)y
′ + a0y = 0,

then these solutions are linear independent if and only if

W (y1, y2, . . . , yn)(x) ̸= 0

for every x.

The proof for if part is done in the lemma above, and the general proof for only
if part is omitted. To prove the case when n = 2, we use Abel’s identity.

Lemma : Abel’s Identity

If a second-order homogeneous linear differential equation

y′′ + p(x)y′ + q(x)y = 0

has two solutions y1 and y2 on an interval I, then

W (y1, y2)(x) = W (y1, y2)(x0)e
−

∫ x
x0

p(t) dt.

for each x0 in the interval I.

Proof. Since W (y1, y2) = y1(x)y
′
2(x)− y′1(x)y2(x), we have

W ′(y1, y2) = y1(x)y
′′
2 (x) + y′1(x)y

′
2(x)− y′1(x)y

′
2(x)− y′′1 (x)y2(x)

= y1(x)y
′′
2 (x) + y′′1 (x)y2(x).

Since y1 and y2 are solutions to the equation y′′ + p(x)y′ + q(x)y = 0,

y1(x)y
′′
2 (x) + y′′1 (x)y2(x)

= y1(x)
(
− p(x)y′2(x)− q(x)

)
+ y2(x)

(
− p(x)y′1(x)− q(x)

)
= −p

(
y1(x)y

′
2(x)− y′1(x)y2(x)

)
= −pW (y1, y2)(x).

This is a separable equation about W (y1, y2)(x). Solving the equation, we get

W (y1, y2)(x) = Ce
−

∫ x
x0

p(t) dt. ■

We now prove the n = 2 case for only if part of theorem 3.1.3.

Proof. We prove the contraposition. Assume that W (y1, y2)(x0) = 0 for some
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x0 ∈ I. Then, y1(x)y′2(x)− y2(x)y
′
1(x) = 0. Rearranging terms, we get

y′1(x)

y1(x)
=

y′2(x)

y2(x)

as long a y1(x) and y2(x) are not zero on every x in I. Without loss of generality,
if y1(x0) = 0 for x0 ∈ I, then y1(x) is the unique solution to the initial-value
problem

y′′ + p(x)y′ + q(x)y = 0, y(x0) = 0, y′(x0) = 0.

Therefore, y1(x) and y2(x) becomes linear dependent. Now, assume that y1(x)

and y2(x) are never zero on I. Then, integrating both sides gives ln |y1(x)| =

ln |y2(x)|+ c′, and therefore
y1(x) = Cy2(x)

for any x ∈ I. Therefore, y1 and y2 are linear dependent. ■

Definition 3.1.3: Fundamental Set of Solutions

If there are n linear independent solutions y1, y2, . . ., yn to the homogeneous
linear n-th order differential equation, then the set

{y1, y2, . . . , yn}

is called the fundamental set of solutions.

Theorem 3.1.4: General Solution - Homogeneous Equations

Let y(x) be a solution to the homogeneous linear n-th order differential equa-
tion

any
(n) + an−1y

(n−1) + · · ·+ a1y
′ + a0y = 0.

Then, there exists constants c1, c2, . . ., cn such that

y(x) = c1y1(x) + c2y2(x) + · · ·+ cnyn(x),

where {y1, y2, . . . , yn} is the fundamental set of solutions.

We only prove the case for n = 2.

Proof. Consider a homogeneous linear 2nd-order differential equation

a2(x)y
′′ + a1(x)y

′ + a0(x)y = 0

on I, and let {y1, y2} be the fundamental set of solutions. Let t ∈ I such that
W (y1, y2)(t) ̸= 0, and g(x) be a solution to the equation where g(t) = a, and
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g′(t) = b. Then, since y1 and y2 are the basis of R2, we get

c1y1(t) + c2y2(t) = a

c1y
′
1(t) + c2y

′
2(t) = b,

which is equal to [
y1 y2
y′1 y′2

] [
c1
c2

]
=

[
a

b

]
.

Therefore, there exists unique c1 and c2. Define

f(x) = c1y1(x) + c2y2(x).

Then, f(x) is a solution to the differential equation, and f(t) = a, and f ′(t) = b.
Since the solution to the initial-value problem is unique, y(x) = f(x). ■

This general solution

y(x) = c1y1(x) + c2y2(x) + · · ·+ cnyn(x)

is called the complementary solution, and is denoted by yc.
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Nonhomogeneous Equations
Theorem 3.1.5: Superposition Principle - Nonhomogeneous Equations

Let yp1 , yp2 , . . ., ypk
be solutions to the differential equation

any
(n) + an−1y

(n−1) + · · ·+ a1y
′ + a0y = f1(x),

any
(n) + an−1y

(n−1) + · · ·+ a1y
′ + a0y = f2(x),

...

any
(n) + an−1y

(n−1) + · · ·+ a1y
′ + a0y = fk(x),

respectively. Then,
yp = yp1

+ yp2
+ · · ·+ ypk

is the particular solution to the equation

any
(n) + an−1y

(n−1) + · · ·+ a1y
′ + a0y = f1(x) + f2(x) + · · ·+ fk(x).

Theorem 3.1.6: General Solution - Nonhomogeneous Equations

Let yp be any particular solution to the nonhomogeneous linear n-th order
differential equation

any
(n) + an−1y

(n−1) + · · ·+ a1y
′ + a0y = f(x).

Then, the general solution to the differential equation is

y = yc + yp

= c1y1(x) + c2y2(x) + · · ·+ cnyn(x) + yp(x),

where c1, c2, . . ., cn are constants.

Proof. Let g(x) be any solution to the differential equation above, and yp be any
particular solution.

ang
(n) + an−1g

(n−1) + · · ·+ a1g
′ + a0g = f(x)

any
(n)
p + an−1y

(n−1)
p + · · ·+ a1y

′
p + a0yp = f(x)

Then, since the equation is linear, by the superposition principle, g − yp is the
solution to the equation

any
(n) + an−1y

(n−1) + · · ·+ a1y
′ + a0y = f(x)− f(x) = 0.

However, since the equation above is homogeneous, the solution can be expressed
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by
g(x)− yp(x) = c1y1(x) + c2y2(x) + · · ·+ cnyn(x)

where c1, c2, . . ., cn are constants. Therefore,

g(x) = c1y1(x) + c2y2(x) + · · ·+ cnyn(x) + yp(x). ■

3.2
Reduction of Order

Reduction of order is a method to find another solution to the homogeneous linear
2nd-order differential equation, with knowing one solution. For instance, suppose
there is a homogeneous linear 2nd-order differential equation

y′′ + f(x)y′ + g(x)y = 0.

With knowing y1, the reduction of order method gives a way to find y2.

Reduction of Order Method
Say that y1 is a solution to the equation

y′′ + f(x)y′ + g(x)y = 0.

We want to find y2 that is linear independent to y1. Let y2/y1 = u, so that
y2 = uy1. Since y2 should be a solution to the equation above, substituting gives

d2

dx2
(uy1) + f

d

dx
(uy1) + g(uy1) = (uy′′1 + 2u′y′1 + u′′y1) + f(uy′1 + u′y1) + g(uy1)

= u′′y1 + u′(2y′1 + fy1) + u(y′′1 + fy′1 + gy1)

= u′′y1 + u′(2y′1 + fy1)

since y′′1 + fy′1 + gy1 = 0. Let w = u′. Then,

u′′y1 + u′(2y′1 + fy1) = w′y1 + w(2y′1 + fy1) = 0.
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Therefore, the equation becomes separable. Solving the equation for w gives

y1
dw

dx
= −(2y′1 + fy1)w

y1
1

w
dw = −(2y′1 + fy1) dx

1

w
dw =

−(2y′1 + fy1)

y1
dx

= −2
y′1
y1

+ f dx∫
1

w
dw =

∫
−2

y′1
y1

− f dx

= −2 ln |y1| −
∫

f(x) dx+ c′

Since

ln |w|+ 2 ln |y1| == −
∫

f(x) dx+ c′,

wy21 = c1e
−

∫
f(x) dx

and

w = c1
e−

∫
f(x) dx

y21

where c1 = ±ec
′
. Since, w = u′, integrating both sides gives

u = c1

∫
e−

∫
f(x) dx

y21
+ c2 dx.

Since c1 and c2 are constants, we choose c1 = 1 and c2 = 0 so that u does not
become a constant because if u is a constant, then y1(x) and y2(x) are linearly
dependent. Finally, we get

y2 = uy1

= y1

∫
e−

∫
f(x) dx

y21
dx.

Example 1
Find the general solution of y′′ + 4y = 0, knowing that cos 2x is a solution.
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Solution In this case, f(x) = 0. Substituting y1 = cos 2x gives

y2 = y1 ·
∫

e−
∫
f(x) dx

y21
dx

= cos 2x

∫
ec

cos2 2x
dx

= ec cos 2x

∫
sec2 2x dx

=
ec

2
cos 2x tan 2x

=
ec

2
sin 2x.

Therefore, the general solution is

y = c1 cos 2x+ c′2 ·
ec

2
sin 2x

= c1 cos 2x+ c2 sin 2x

where c2 = c′2 · ec/2.

Example 2
Find the general solution of y′′ + 3y′ − 4y = 0, knowing that ex is a solution.

Solution In this case, f(x) = 3. Substituting y1 = ex gives

y2 = y1 ·
∫

e−
∫
f(x) dx

y21
dx

= ex
∫

e−3x

e2x
dx

= ex
∫

e−5x dx

= ex ·
(
− 1

5
e−5x

)
= −1

5
e−4x.

Therefore, the general solution is

y = c1e
x + c′2 ·

(
− 1

5
e−4x

)
= c1e

x + c2e
−4x.
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3.3
Homogeneous Linear Equations with Constant Coefficients

This section covers homogeneous linear equations with constant coefficients. That
is, equations of the form

any
(n) + an−1y

(n−1) + · · ·+ a1y
′ + a0y = 0,

where an, an−1, . . ., a0 are constants. We first consider the 2nd-order case, where
the equation is

ay′′ + by′ + cy = 0.

2nd-Order Equations
Since the equation is linear and 2nd-order, there are two linear independent solu-
tions. We claim that the solutions are of the form eαx, in general. Substituting
eαx gives

(aα2 + bα+ c)eαx = 0,

which gives aα2 + bα+ c = 0 since exponential functions are always positive. This
typical quadratic equation is called the characteristic equation.

Case 1: Distinct Real Roots
When the quadratic equation has two distinct real roots α and β, then the solu-
tion to the differential equation is eαx and eβx. These two solutions are linearly
independent because one cannot be a constant multiple of another. Therefore, the
general solution is

y = c1e
αx + c2e

βx.

Case 2: Repeated Real Roots
When the quadratic equation has repeated real roots α, then we know one solution,
but we need one more. To get a second solution, we use the reduction of order
method. Recall the reduction of order formula

y2 = y1

∫
e−

∫
f(x) dx

y21
dx,

where y1 is a known solution. Here, f(x) = b/a = −2α by Vieta’s formula.
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Substituting eαx to the formula gives

y2 = y1

∫
e−

∫
f(x) dx

y21
dx

= eαx
∫

e−
∫
−2αdx

e2αx
dx

= eαx
∫

dx

= xeαx,

which is the second solution that is linear independent of the first. Therefore, the
general solution is

y = c1e
αx + c2xe

αx.

Case 3: Complex Conjugate Roots
If the quadratic equation has complex roots a+ bi, then its conjugate a− bi is also
a root. Therefore, two solutions are e(a+bi)x and e(a−bi)x, which is a problem since
there are complex numbers in exponents. For this, we use the Euler’s Formula
which states that

eix = cosx+ i sinx.

It follows that

eibx = cos bx+ i sin bx and e−ibx = cos bx− i sin bx.

Therefore,

y1 = e(a+bi)x

= eax · ebix

= eax(cos bx+ i sin bx),

and
y2 = eax(cos bx− i sin bx).

Since the equation is homogeneous, any linear combination of y1 and y2 is also a
solution. Therefore,

Y1 =
1

2
(y1 + y2) = eax cos bx and

Y2 =
1

2i
(y1 − y2) = eax sin bx

are two solutions to the equation. By theorem 3.1.3, these two solutions are linearly
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independent because

W (eax cos bx,eax sin bx)(x)

=

∣∣∣∣ eax cos bx eax sin bx

aeax cos bx− beax sin bx aeax sin bx+ beax cos bx

∣∣∣∣
= be2ax ̸= 0.

Therefore, the general solution is

y = c1Y1 + c2Y2

= c1e
ax cos bx+ c2e

ax sinx

= eax(c1 cos bx+ c2 sin bx).

Example 1
Find the general solution to the equation y′′ − k2y = 0, where k is a constant.

Solution The characteristic equation for y′′−k2y = 0 is α2−k2 = 0, and therefore
α = ±k. Thus, the general solution is

y = c1e
kx + c2e

−kx.

Example 2
Find the general solution to the equation y′′ − 2ky′ + k2y = 0, where k is a
constant.

Solution The characteristic equation for y′′ − 2ky′ + k2y = 0 is α2 − 2kα+ k2 = 0,
and therefore α = k of multiplicity 2. Thus, the general solution is

y = c1e
kx + c2xe

kx.

Example 3
Find the general solution to the equation y′′ + k2y = 0, where k is a constant.

Solution The characteristic equation for y′′+k2y = 0 is α2+k2 = 0, and therefore
α = ±ik. Thus, the general solution is

y = c1 cos kx+ c2 sin kx.

Higher Order Equations
For higher order equations of the form

any
(n) + an−1y

(n−1) + · · ·+ a1y
′ + a0y = 0,
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the characteristic equation is

anα
n + an−1α

n−1 + · · ·+ a1α+ a0 = 0.

By Fundamental Theorem of Algebra, which states that an equation with
degree n has n solutions in C, one can find n values of α, and thus n linear
independent solutions. If a root α1 has multiplicity k, then the k linear independent
solutions are

y = eα1x, xeα1x, x2eα1x, . . . , xk−1eα1x.

Theorem 3.3.1: Characteristic Equation with Multiplicity k

If a characteristic equation of a homogeneous linear differential equation with
constant coefficients has a root α1 with multiplicity k, then the k linear
independent solutions to the differential equation are

y = eα1x, xeα1x, x2eα1x, . . . , xk−1eα1x.

Proof. Let L(y) = y(n) + an−1y
(n−1) + · · ·+ a1y

′ + a0y. Then,

L(eαx) = (αn + an−1α
n−1 + · · ·+ a1α+ a0)e

αx.

Let α1 be a root with multiplicity k. Then, the characteristic equation can be
expressed as (α− α1)

kf(α), where f(α) = (α− α2) · · · (α− αn−k). So we get

L(eαx) = (α− α1)
kf(α)eαx.

The differentiations with respect to α and x are independent, so differentiating
both sides with respect to α gives

∂

∂α
L(eαx) = L

(
∂

∂α
eαx

)
= L(xeαx)

= k(α− α1)
k−1f(α)eαx + (α− α1)

k ∂

∂α

(
f(α)eαx

)
= 0

for α = α1. Therefore, xeαx is also a solution to the differential equation. Re-
peating this procedure k − 1 times, the right side is always zero since it contains
a α − α1 term. The degree of x on the left side increases every time, taking the
derivative of the left side. Therefore, xieαx is a solution for i =1, 2, . . ., k− 1. ■

Example 4
Solve y(5) + y(4) − y′ − y = 0.
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Solution The characteristic equation is

α5 + α4 − α− 1 = 0.

Solving for α gives

(α− 1)(α+ 1)2(α2 + 1) = 0

α = 1,−1,±i,

where −1 has multiplicity 2. Therefore, the general solution is

y = c1e
x + c2e

−x + c3xe
−x + c4 sinx+ c5 cosx.

3.4
Cauchy-Euler Equations

Definition 3.4.1: Cauchy-Euler Equation

Linear differential equations of the form

anx
ny(n) + an−1x

n−1y(n−1) + · · ·+ a1xy
′ + a0xy = 0,

where an, an−1, . . ., a0 are constants, are called Cauchy-Euler equations.

For each term, the order of y and the degree of x should be the same. Also for
this section, we first consider the 2nd-order case, where the equation is

ax2y′′ + bxy′ + cy = 0.

2nd-Order Equations
Since the equation is linear and 2nd-order, there are two linearly independent
solutions. We claim that the solutions are of the form xα, in general. Substituting
xα gives (

aα(α− 1) + bα+ c
)
xα = 0,

which gives aα(α − 1) + bα + c = 0 or aα2 + (−a + b)α + c = 0. This is the
characteristic equation.

Case 1: Distinct Real Roots
When the quadratic equation has two distinct real roots α and β, then the so-
lution to the differential equation is xα and xβ . These two solutions are linearly
independent because one cannot be a constant multiple of another. Therefore, the
general solution is

y = c1x
α + c2x

β .
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Case 2: Repeated Real Roots
When the quadratic equation has repeated real roots α, then we know one solution,
but we need one more. To get a second solution, we use the reduction of order
method. Recall the reduction of order formula

y2 = y1

∫
e−

∫
f(x) dx

y21
dx,

where y1 is a known solution. Here, f(x) = bx/ax2 = b/ax, and (b− a)/a = −2α

by Vieta’s formula. Substituting xα to the formula gives

y2 = y1

∫
e−

∫
f(x) dx

y21
dx

= xα

∫
e−

∫
(b/ax) dx

x2α

= xα

∫
e−b ln x/a

x−(b−a)/a
dx

= xα

∫
1

x
dx

= xα lnx.

which is the second solution that is linear independent of the first. Therefore, the
general solution is

y = c1x
α + c2x

α lnx.

Case 3: Complex Conjugate Roots
If the quadratic equation has complex roots a+ ib, then its conjugate a− ib is also
a root. Therefore, two solutions are xa+ib and xa−ib. To solve the problem for
complex exponential, we change the expression to

xa+ib = xa · xib

= xa · (eln x)ib

= xa · eib ln x

= xa(cos b lnx+ i sin b lnx) and

xa−ib = xa(cos b lnx− i sin b lnx)

Therefore,

y1 = xa(cos b lnx+ i sin b lnx) and

y2 = xa(cos b lnx− i sin b lnx).
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Since the equation is homogeneous, any linear combination of y1 and y2 is also a
solution. Therefore,

Y1 =
1

2
(y1 + y2) = xa cos b lnx and

Y2 =
1

2i
(y1 − y2) = xa sin b lnx

are two solutions to the equation. By theorem 3.1.3, these two solutions are linearly
independent because

W (xa cos b lnx,xa sin b lnx)(x)

=

∣∣∣∣ xa cos b lnx xa sin b lnx

−bxa sin b lnx+ axa−1 cos b lnx bxa cos b lnx+ axa−1 sin b lnx

∣∣∣∣
= bx2a(sin2 b lnx+ cos2 b lnx)

= bx2a ̸= 0.

Therefore, the general solution is

y = c1Y1 + c2Y2

= c1x
a cos b lnx+ c2x

a sin b lnx

= xa(c1 cos b lnx+ c2 sin b lnx).

Example 1
Find the general solution to the equation x2y′′ + xy′ − 4y = 0.

Solution The characteristic equation for x2y′′ +xy′ − 4y = 0 is α(α− 1)+α− 4 =

α2 − 4 = 0, and therefore α = ±2. Thus, the general solution is

y = c1x
2 + c2x

−2.

Example 2
Find the general solution to the equation x2y′′ − xy′ + y = 0.

Solution The characteristic equation for x2y′′ − xy′ + y = 0 is α(α− 1)− α+ 1 =

α2 − 2α+ 1 = 0, and therefore α = 1 of multiplicity 2. Thus, the general solution
is

y = c1x+ c2x lnx.

Example 3
Find the general solution to the equation x2y′′ + xy′ + 4y = 0.
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Solution The characteristic equation for x2y′′ +xy′ − 4y = 0 is α(α− 1)+α+4 =

α2 + 4 = 0, and therefore α = ±2i. Thus, the general solution is

y = c1 cos 2 lnx+ c2 sin 2 lnx.

Higher Order Equations
For higher order equations of the form

anx
ny(n) + an−1x

n−1y(n−1) + · · ·+ a1xy
′ + a0y = 0,

the characteristic equation is

anα(α− 1) · · · (α− n+ 1) + · · ·+ a1α+ a0 = 0.

By Fundamental Theorem of Algebra, one can get n values of α, and thus n

linear independent solutions. If a root α1 has multiplicity k, then the k linear
independent solutions are

y = xα1 , xα1 lnx, xα1(lnx)2, . . . , xα1(lnx)k−1.

Theorem 3.4.1: Characteristic Equation with Multiplicity k

If a characteristic equation of a Cauchy-Euler equation has a root α1 with
multiplicity k, then the k linear independent solutions to the differential
equation are

y = xα1 , xα1 lnx, xα1(lnx)2, . . . , xα1(lnx)k−1.

The proof is omitted, but one can prove by substituting x = et which changes
the Cauchy-Euler equation to a homogeneous linear equation with constant coef-
ficients.

Example 4
Solve x3y′′′ − xy′ − 3y = 0.

Solution The characteristic equation is

α(α− 1)(α− 2)− α− 3 = α3 − 3α2 + α− 3

= (α− 3)(α2 + 1) = 0.

Solving for α gives α = 3,±i. Therefore, the general solution is

y = c1x
3 + c2 cos lnx+ c3 sin lnx.
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3.5
Undetermined Coefficients

Recall from section 3.1 that to solve a differential equation

an(x)y
(n) + an−1(x)y

(n−1) + · · ·+ a1(x)y
′ + a0(x)y = f(x),

one should find the complementary and particular solutions to the equation, and
add them. For the last few sections, we have covered how to find complementary
solutions for some equations. This section and the next section cover how to find
particular solutions. Although the variation of parameter method is used more,
the undetermined coefficient method is also worth knowing.

Undetermined Coefficient Method
Suppose there is an equation of the form

any
(n) + an−1y

(n−1) + · · ·+ a1y
′ + a0y = f(x),

where an, an−1, . . ., a0 are constants. If f(x) is either a polynomial function,
exponential function, trigonometric function, or a finite sum or product of these,
we can guess the particular solution. This is best explained by an example.

Example 1
Find a particular solution of y′′ + 3y′ + 2y = 2x2 + 6x+ 4.

Solution Since the right-hand side is a polynomial of degree 2, we can guess that
y is a polynomial of degree 2. Therefore, let yp = ax2 + bx+ c. Then,

y′′ + 3y′ + 2y = (ax2 + bx+ c)′′ + 3(ax2 + bx+ c)′ + 2(ax2 + bx+ c)

= 2a+ 3(2ax+ b) + 2(ax2 + bx+ c)

= 2ax2 + (6a+ 2b)x+ 2a+ 3b+ 2c = 2x2 + 6x+ 4.

This gives a system of linear equations

2a = 2

6a+ 2b = 6

2a+ 3b+ 2c = 4.

Solving the linear system, we get a = 1, b = 0, and c = 1. Therefore, yp = x2 + 1.
There may be other particular solutions. However, we only need one particular
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solution and can say that the general solution is

y = c1e
−x + c2e

−2x + x2 + 1.

The table below shows which form of yp to try corresponding to f(x).

Guessing Particular Solutions
f(x) yp
Polynomial of degree n (assum-
ing the equation contains y)

Polynomial of the same degree

ekx aekx

sin kx a sin kx+ b sin kx

cos kx a sin kx+ b sin kx

If f(x) is a finite sum or product of these functions, one can try the particular
solution as the sum or product of each corresponding yp.

Example 2
Solve y′′ − 2y′ + y = 25 sin 2x+ (x+ 6)e3x.

Solution For the complementary solution, since the characteristic equation is α2−
2α+ 1 = 0, α = 1 with multiplicity 2. The solution is

yc = c1e
x + c2xe

x.

For the particular solution, let the particular solution to the equation

y′′ − 2y′ + y = 25 sin 2x

be yp1
and the particular solution to the equation

y′′ − 2y′ + y = (x+ 6)e3x

be yp2 . Then, yp = yp1 + yp2 by superposition principle. We first guess y1 =

a1 sin 2x+ b1 cos 2x. Substituting to the equation gives

y′′ − 2y′ + y

= (a1 sin 2x+ b1 cos 2x)
′′ − 2(a1 sin 2x+ b1 cos 2x)

′ + (a1 sin 2x+ b1 cos 2x)

= (−4a1 sin 2x− 4b1 cos 2x)− 2(2a1 cos 2x− 2b1 sin 2x) + (a1 sin 2x+ b1 cos 2x)

= (−3a1 + 4b1) sin 2x+ (−4a1 − 3b1) cos 2x = 25 sin 2x,

and a system of linear equations

−3a1 + 4b1 = 25

−4a1 − 3b1 = 0.
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Therefore, a1 = −3, b1 = 4 and yp1
= −3 sin 2x + 4 cos 2x. Now, for yp2

, since
(x+ 6)e3x is a product of a linear function and an exponential function, we guess
yp2

= (a2x+ b2)e
3x. Substituting to the equation gives

y′′ − 2y′ + y

=
(
(a2x+ b2)e

3x
)′′ − 2

(
(a2x+ b2)e

3x
)′
+

(
(a2x+ b2)e

3x
)

=
(
9(a2x+ b2)e

3x + 6a2e
3x
)
− 2

(
3(a2x+ b2)e

3x + a2e
3x
)
+

(
(a2x+ b2)e

3x
)

=
(
4a2x+ (4a2 + 4b2)

)
e3x,

and a system of linear equations

4a2 = 1

4a2 + 4b2 = 6.

Solving the system, we get a2 = 1/4, b2 = 5/4 and yp2
= (x/4+5/4)e3x. Therefore,

the general solution is

y = c1e
x + c2xe

x − 3 sin 2x+ 4 cos 2x+
xe3x

4
+

5e3x

4
.

For most of the cases, particular solutions can be guessed by following the rule
in the table above, but there are some exceptions. We give an example.

Example 3
Show that, for any real a, ae2x cannot be a particular solution to the equation
y′′ − 5y′ + 6y = 3e2x.

Solution If we substitute y = ae2x to the equation, we get

y′′ − 5y′ + 6y = (ae2x)′′ − 5(ae2x)′ + 6(ae2x)

= 4ae2x − 10ae2x + 6ae2x

= 0 ̸= 3e2x.

This happens because e2x is already included in the complementary solution.
The complementary solution for the equation above is

y = c1e
2x + c2e

3x,

and ae2x = a · e2x +0 · e3x, so it contradicts the definition of a particular solution.
To resolve this, we try the form yp = axne2x. The smallest n to make yp not a
complementary solution is n = 1, so we guess yp = axe2x.
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Example 4
Solve y′′ − 5y′ + 6y = 3e2x.

Solution Substituting y = axe2x to the equation, we get

y′′ − 5y′ + 6y = (axe2x)′′ − 5(axe2x) + 6(axe2x)

= (4axe2x + 4ae2x)− 5(ae2x + 2axe2x) + 6(axe2x)

= 5ae2x = 3e2x

Therefore, 5a = 3, and a = 3/5. The general solution to the equation is

y = c1e
2x + c2e

3x +
3

5
xe2x.

To guess the particular solution, if p(x) is one of the trial particular solution
formula to the corresponding f(x) in the table above, then one should use yp =

xnp(x), where n is the least positive integer such eliminates the duplication with
the complementary solution.

Example 5
Solve y′′ + 10y′ + 25y = (3x+ 4)e−5x.

Solution For the complementary solution, since the characteristic equation is α2+

10α+ 25 = 0, α = −5 with multiplicity 2. The solution is

yc = c1e
−5x + c2xe

−5x.

Since f(x) = (3x + 4)e−5x, the form of the particular solution should be (ax +

b)e−5x. However, since this can be expressed by a linear combination of e−5x and
xe−5x, we multiply x to make yp linear independent with yc. Therefore, we use
yp = (ax3 + bx2)e−5x. Substituting to the equation gives

y′′ + 10y′ + 25y

=
(
(ax3 + bx2)e−5x

)′′
+ 10

(
(ax3 + bx2)e−5x

)′
+

(
(ax3 + bx2)e−5x

)
= (25ax3e−5x − 30ax2e−5x + 25bx2e−5x + 6axe−5x − 20bxe−5x + 2be−5x)

+ 10(−5ax3e−5x + 3ax2e−5x − 5bx2e−5x + 2bxe−5x) + 25(ax3e−5x + bx2e−5x)

= (6ax+ 2b)e−5x,

and therefore 6a = 3, 2b = 4. The solution to the equation is

y = c1e
−5x + c2xe

−5x +
x3e−5x

2
+ 2x2e−5x.
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3.6
Variation of Parameters

The variation of parameter method, already introduced in solving first-order lin-
ear equations, is another method for finding the particular solution. The variation
of parameter method is better than the undetermined coefficient method in gen-
eral because it always yields a particular solution. Before we start, we introduce
Cramer’s rule, which will help to find the particular solution.

Theorem 3.6.1: Cramer’s Rule

Consider a linear system Ax = b with n equations and n variables, where
detA ̸= 0, and x = (x1, x2, . . . , xn)

T . Then,

xi =
detAi

detA

where Ai is the matrix obtained by replacing ith column by b.

Proof. Let C be the cofactor matrix of A. Then, by definition, CT is the adjugate
matrix of A. Therefore,

A · CT = detA · In.

Since detA ̸= 0, A is invertible, and

A−1 =
1

detA
CT .

The solution to the linear system Ax = b is

x = A−1b

=

(
1

detA
CT

)
b.

By the definition of matrix product, we have

xi =
1

detA

( k∑
j=1

Ajibj

)
.

Since Ai only differs with ith column with A, the matrix obtained by deleting
ith column and jth row from Ai is equal to the matrix obtained by deleting ith
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column and jth row from A. Therefore, Aji = [Ai]ji. We finally have

xi =
1

detA

( k∑
j=1

Ajibj

)

=
1

detA

( k∑
j=1

[Ai]jibj

)

=
1

detA
· detAi

=
detAi

detA
. ■

2nd-Order Case
We first consider a 2nd-order case. Consider a 2nd-order linear differential equation

y′′ + p(x)y′ + q(x) = f(x).

Let the fundamental set of solutions be {y1, y2}. We set yp = u1(x)y1(x) +

u2(x)y2(x), and look for u1(x) and u2(x). Substituting to the equation gives

y′′p + p(x)y′p + q(x)yp = (u1y1 + u2y2)
′′ + p(u1y1 + u2y2)

′ + q(u1y1 + u2y2)

= (u1y
′′
1 + 2u′

1y
′
1 + u′′

1y1 + u2y
′′
2 + 2u′

2y
′
2 + u′′

2y2)

+ p(u1y
′
1 + u′

1y1 + u2y
′
2 + u′

2y2) + q(u1y1 + u2y2)

= u1(y
′′
1 + py′1 + qy1) + 2u′

1y
′
1 + u′′

1y1

+ u2(y
′′
2 + py′2 + qy2) + 2u′

2y
′
2 + u′′

2y2 + pu′
1y1 + pu′

2y2

= u′
1y

′
1 + u′

2y
′
2 + u′

1y
′
1 + u′

2y
′
2 + u′′

1y1 + u′′
2y2 + pu′

1y1 + pu′
2y2

= u′
1y

′
1 + u′

2y
′
2 +

d

dx
(u′

1y1 + u′
2y2) + p(u′

1y1 + u′
2y2) = f(x).

Since we need only one pair of
(
u1(x), u2(x)

)
, we assume, for simplicity, that

u′
1y1 + u′

2y2 = 0. Then, we get

u′
1y

′
1 + u′

2y
′
2 +

d

dx
(u′

1y1 + u′
2y2) + p(u′

1y1 + u′
2y2) = u′

1y
′
1 + u′

2y
′
2 = f(x)

We now have two equations

y1u
′
1 + y2u

′
2 = 0

y′1u
′
1 + y′2u

′
2 = f(x),
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where y1 and y2 are known. Notice that this system can be expressed as[
y1 y2
y′1 y′2

] [
u′
1

u′
2

]
=

[
0

f(x)

]
.

Since y1 and y2 are linear independent, det

[
y1 y2
y′1 y′2

]
= W (y1, y2)(x) ̸= 0, and

therefore the system has a unique solution. Using Cramer’s rule, we get

u′
1 =

det

[
0 y2

f(x) y′2

]
det

[
y1 y2
y′1 y′2

] = − y2f(x)

W (y1, y2)(x)
and

u′
2 =

det

[
y1 0

y′1 f(x)

]
det

[
y1 y2
y′1 y′2

] =
y1f(x)

W (y1, y2)(x)
.

Integrating each formula gives u1 and u2, and one can find the particular solution
to the equation.

Example 1
Solve y′′ + y = tanx.

Solution To find the complementary solution, we solve the characteristic equation
α2 + 1 = 0, which gives α = ±i. Therefore, y1 = cosx, y2 = sinx, and the
complementary solution is

y = c1 cosx+ c2 sinx.

To find the particular solution, we let yp = u1 cosx+ u2 sinx. Then,

u′
1 = − y2f(x)

W (y1, y2)(x)

= − sinx tanx

1

= − sinx tanx

= − sin2 x

cosx

= −1− cos2 x

cosx

= − secx+ cosx
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and

u′
2 =

y1f(x)

W (y1, y2)(x)

=
cosx tanx

1

= sinx.

Integrating both expressions gives

u1 = − ln(tanx+ secx) + sinx and u2 = − cosx.

Therefore, the particular solution is

yp =
(
− ln(tanx+ secx) + sinx

)
cosx− cosx sinx

= − cosx ln(tanx+ secx),

and the general solution is

y = c1 cosx+ c2 sinx− cosx ln(tanx+ secx).

Higher Order Equations
The variation of parameter method can also be used in equations with higher order.
Consider a linear differential equation

an(x)y
(n) + an−1(x)y

(n−1) + · · ·+ a1(x)y
′ + a0(x)y = f(x)

where the fundamental set of solutions is {y1, y2, . . . , yn}. We let yp = u1y1 +

u2y2 + · · ·+ unyn and solve the linear system
y1 y2 · · · yn
y′1 y′2 · · · y′n
...

...
. . .

...
y
(n−1)
1 y

(n−1)
2 · · · y

(n−1)
n



u′
1

u′
2

. . .
u′
n

 =


0

0
. . .
f(x)


to get u′

1, u′
2, . . ., u′

n. Integrating each of these will yield a particular solution.
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3.7
Nonlinear Equations

Nonlinear equations, in general, are harder than linear equations. First, they don’t
satisfy the superposition principle. For instance, consider a nonlinear equation
(y′)2 − y2 = 0. Solving this gives

(y′)2 = y2

y′ = ±y

y = ex, e−x.

Therefore, y = ex and y = e−x are two solutions to the equation. However,
y = ex + e−x is not a solution to the equation above because

(y′)2 − y2 = (ex − e−x)2 − (ex + e−x)2

= −4 ̸= 0.

Plus, the solution to nonlinear equations may not even exist, and may not be
unique if it exists. Still, some nonlinear equations can be solved by substituting
appropriate formulas.

Reduction of Order
Nonlinear equations of second-order can be reduced to first-order equations under
some conditions. Two cases where the reduction of order method will work are
when x is not included in the equation or when y is not included in the equation.

When y is not included in the equation, i.e. when the equation is of the form
f(x, y′, y′′) = 0, then substituting u = y′ will reduce the equation to first-order.
Since y′′ = u′, the equation becomes f(x, u, u′) = 0, which is first-order.

Example 1

Solve y′′y′ = − 1

x3
, y(1) = 1, y′(1) =

Solution Let u = y′. Then, y′′ = u′, and the equation becomes

u′u = − 1

x3
,
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which is separable. Solving for u gives

u
du

dx
= − 1

x3

u du = − 1

x3
dx∫

u du = −
∫

1

x3
dx

1

2
u2 =

1

2
x−2 + c1.

Since y′(1) = u(1) = 1, c1 = 0, and therefore u = y′ = x−1. Finally, solving for y

gives
y = lnx+ c2.

The initial condition y(1) = 1 gives c2 = 1, and hence the solution is

y = lnx+ 1.

When x is not included in the equation, i.e. when the equation is of the form
f(y, y′, y′′) = 0, then substituting u = y′ will reduce the equation to first-order
with respect to y. Since y′′ = u′,

y′′ =
du

dx
=

du

dy

dy

dx
= y′

du

dy
.

Therefore, the equation becomes f(y, u, u du/dy), which is first-order with respect
to y.

Example 2
Solve yy′′ + (y′)2 = 0.

Solution Let u = y′. Then, y′′ = u du/dy. Substituting these to the original
equation gives

yu
du

dy
+ u2 = 0

−y
du

dy
= u∫

1

u
du = −

∫
1

y
dy

ln |u| = − ln |y|+ c1
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and therefore
u = c2

1

y

where c2 = ±ec1 . Since u = y′, solving for y gives

dy

dx
= c2

1

y

y dy = c2 dx∫
y dy = c2

∫
dx

1

2
y2 = c2x+ c3.

Therefore, the solution to the equation is

y =
√
c′2x+ c′3

where c′2 = 2c2 and c′3 = 2c3.
Besides the reduction of order method, some nonlinear equations can be solved

by applying an appropriate substitution. There isn’t a specific answer to which
substitution one should make, and one should find out which substitution helps to
make the equation simpler.

Example 3

Solve
dy

dx
= x3(x+ y)2 − 3(x+ y)

x
− 1.

Solution Let u = x+ y. Then,
du

dx
= 1 +

dy

dx
. Then, the equation becomes

du

dx
= x3u2 − 3u

x

and thus,
du

dx
+

3

x
u = x3u2

which is Bernoulli’s equation. Now let v = u−1. Then, since dv = −u−2du, we get

u−2 du

dx
+

3

x
u−1 = x3

−dv

dx
+

3

x
v = x3

dv

dx
− 3

x
v = −x3.
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The integrating factor is
µ(x) = e

∫
− 3

xdx = x−3,

and hence

v = x3

∫
x3 · (−x−3) dx

= x3

∫
−1 dx

= −x4 + cx3.

Since v = u−1 =
1

x+ y
,

x+ y =
1

−x4 + cx3

and therefore the solution is

y = −x+
1

−x4 + cx3
.
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Series Solutions
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Until now, we have covered linear differential equations with constant coefficients,
and Cauchy-Euler equations. There are other equations, where they have variable
coefficients, such as y′′′ − x2y′ = 0. Some of these equations can not be solved
explicitly, so we use an analytic method, called the power series method. The idea
is to find a solution in terms of power series. Handling power series is much easier
than exponential or trigonometric functions because they are polynomials. This
chapter covers the power series method to solve differential equations.

4.1
The Power Series

Definition 4.1.1: Power Series

A power series is an infinite series of the form

∞∑
n=0

an(x− c)n = a0 + a1(x− c) + a2(x− c)2 + · · · .

where ai is the coefficient of the ith term, and c is a constant.

The definition above specifically illustrates a power series centered at c. If
c = 0, then the power series can be expressed by

∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + · · · .

Definition 4.1.2: Convergence

A sequence {sn} converges to L if for every ϵ > 0 there exists N such that
|sn − L| < ϵ for all n > N .

If we define {sn} where si =
∑i

n=0 an(x−c)n. Then, the power series converges
if and only if sn converges. The interval of x which makes the series converge is
called the interval of convergence.

Definition 4.1.3: Interval of Convergence

The interval of convergence of a power series is the interval where for any
x in the interval, the series converges for x. The interval is usually denoted
by |x− c| < R, where R is called the radius of convergence.

This states if x is apart from c by a distance smaller than R, then the series
converges. To find R, usually the ratio test is used.
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Theorem 4.1.1: Ratio Test

Consider a sequence {sn}. If we define

L = lim
n→∞

∣∣∣∣sn+1

sn

∣∣∣∣,
then the series

∞∑
n=0

sn

• absolutely converges if L < 1,

• diverges if L > 1,

• is inconclusive if L = 1.

To determine if a power series converges or not, we define {sn} where sn =

an(x− c)n. Using the ratio test, we get

lim
n→∞

∣∣∣∣sn+1

sn

∣∣∣∣ = lim
n→∞

∣∣∣∣an+1(x− c)n+1

an(x− c)n

∣∣∣∣
= lim

n→∞

∣∣∣∣an+1(x− c)

an

∣∣∣∣
= |x− c| lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L.

Therefore, since L should be smaller than 1 to make the series converge, we have

|x− c| lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ < 1

which can determine the radius and the interval of convergence. If a power series
converges, then it defines a function, and we can say that

f(x) =

∞∑
n=0

an(x− c)n.

Differentiations and integrations of f(x) can be found as its derivatives and inte-
grals of the power series, by term-by-term. These functions will be the main point
of our focus in this chapter.

Example 1
1

1− x
is equal to the power series 1 + x+ x2 + · · · where x is in its interval of

convergence −1 < x < 1.
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4.2
Power Series Solutions

Consider a linear 2nd-order differential equation

a2(x)y
′′ + a1(x)y

′ + a0(x)y = 0

which can also be written as its standard form

y′′ + p(x)y′ + q(x)y = 0.

To see if there exists a power series solution centered at c, we need to see if c is an
ordinary point.

Definition 4.2.1: Ordinary/Singular Point

A point c is called an ordinary point if both p(x) and q(x) are analytic at
c. If either p(x) or q(x) is not analytic at c, then c is a singular point.

We focus on polynomial coefficients since polynomials are analytic everywhere.
Therefore, p(x) and q(x) are analytic everywhere except the points where a2(x) =

0.

Theorem 4.2.1: Existence of a Power Series Solution

If c is an ordinary point, then there exist two linear independent power series
solutions of the form

y =

∞∑
n=0

an(x− c)n = a0 + a1(x− c) + a2(x− c)2 + · · · .

which converges on some interval not containing any singular points.

The proof is omitted since it requires complex analysis.

Undetermined Series Coefficient Method
The method for finding a power series solution is similar to the undetermined
coefficient method, used in section 3.5. The method is this: substitute

∑∞
n=0 anx

n

to the equation and make a recurrence relation with an. This is best explained by
an example.
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Example 1
Solve y′′ + x3y = 0.

Solution Since 0 is an ordinary point, there exists a power series solution centered
at 0

y =

∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + · · · .

We substitute this expression to the equation. Since

y′′ =

∞∑
n=2

n(n− 1)anx
n−2 = 2a2 + 6a3x+ 12a4x

2 + · · · ,

y′′ + x3y =

∞∑
n=2

n(n− 1)anx
n−2 + x3

( ∞∑
n=0

anx
n

)
= (2a2 + 6a3x+ 12a4x

2 + · · · ) + x3(a0 + a1x+ a2x
2 + · · · )

= 2a2 + 6a3x+ 12a4x
2 +

∞∑
n=0

(
an + (n+ 5)(n+ 4)an+5

)
xn+3

= 0,

the coefficients of xi for i = 1, 2, . . . should be zero. Therefore, we get a2 = a3 =

a4 = 0, and a recurrence relation

an+5 = − an
(n+ 5)(n+ 4)

for n ≥ 0.

Since a2 = a3 = a4 = 0, ai = 0 if i ≡ 2, 3, 4 mod 5. The solution is

y = a0 + a1x− a0
4 · 5

x5 − a1
5 · 6

x6 +
a0

4 · 5 · 9 · 10
x10 +

a1
5 · 6 · 10 · 11

x11 − · · · .

Here, a0 and a1 are coefficients. The equation is linear and 2nd-order, so there
exists two linear independent solutions y1(x) and y2(x). To make the form y =

a0y1(x) + a1y2(x), we group each terms by a0 and a1, which gives

y1(x) = 1− 1

4 · 5
x5 +

1

4 · 5 · 9 · 10
x10 − 1

4 · 5 · 9 · 10 · 14 · 15
x15 + · · · and

y2(x) = x− 1

5 · 6
x6 +

1

5 · 6 · 10 · 11
x11 − 1

5 · 6 · 10 · 11 · 15 · 16
x16 + · · · .
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Example 2
Solve (1 + x)y′′ − xy′ − y = 0.

Solution The equation has singular points at x = −1, and this gives R = 1. Since
0 is an ordinary point, there exists a power series solution centered at 0

y =

∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + · · ·

which converges at least for −1 < x < 1. We substitute this expression to the
equation. Since

y′′ =

∞∑
n=2

n(n− 1)anx
n−2 = 2a2 + 6a3x+ 12a4x

2 + · · · and

y′ =

∞∑
n=1

nanx
n−1 = a1 + 2a2x+ 3a3x

2 + · · · ,

(1 + x)y′′ − xy′ − y = (1 + x)

( ∞∑
n=2

n(n− 1)anx
n−2

)
− x

( ∞∑
n=1

nanx
n−1

)
−

∞∑
n=0

anx
n

= (1 + x)(2a2 + 6a3x+ 12a4x
2 + · · · )− x(a1 + 2a2x+ 3a3x

2 + · · · )

− (a0 + a1x+ a2x
2 + · · · )

= 2a2 − a0 +

∞∑
n=1

(
(n+ 1)(n+ 2)an+2 + n(n+ 1)an+1 − (n+ 1)an

)
xn

= 0,

the coefficients of xi for i = 1, 2, . . . should be zero. Therefore, we get 2a2−a0 = 0,
and a recurrence relation

(n+ 1)(n+ 2)an+2 + n(n+ 1)an+1 − (n+ 1)an = 0,

and (n+ 2)an+2 + nan+1 − an = 0 for n ≥ 1.

Compared to the example before, since the recurrence relation contains three
terms, it is harder to find the general formula for ai. For this case, we divide
into two cases, one assuming a1 = 0, and one assuming a0 = 0.
Case 1: if a0 = 0 If a0 = 0, a2 = 0. We get

• 3a3 + a2 − a1 = 0, so a3 =
−a2 + a1

3
= −1

3
a1

• 4a4 + 2a3 − a2 = 0, so a4 =
−6a3 + 3a2

12
=

1

6
a1
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• 5a5 + 3a4 − a3 = 0, so a5 =
−3a4 + a3

5
= −1

6
a1

Case 2: if a1 = 0 If a1 = 0, we get

• 3a3 + a2 − a1 = 0, so a3 =
−a2 + a1

3
= −1

3
a2

• 4a4 + 2a3 − a2 = 0, so a4 =
−2a3 + a2

4
=

5

12
a2

• 5a5 + 3a4 − a3 = 0, so a5 =
−3a4 + a3

5
= −19

60
a2

Therefore, we have two solutions

y1(x) = x− 1

3
x3 +

1

6
x4 − 1

6
x5 + · · · and

y2(x) = 1 +
1

2
x2 − 1

3
x3 +

5

12
x4 − 19

60
x5 + · · · .

The general solution is

y = a1y1 + a0y2

= a1

(
x− 1

3
x3 +

1

6
x4 − 1

6
x5 + · · ·

)
+ a2

(
1 +

1

2
x2 − 1

3
x3 +

5

12
x4 − 19

60
x5 + · · ·

)
.

We now know how to solve equations with polynomial coefficients, but not
all linear differential equations have polynomial coefficients. Still, equations with
nonpolynomial coefficients can be solved by using the Taylor series to change into
polynomial coefficients.

Definition 4.2.2: Taylor Series

The Taylor series of a function f(x) at c is

f(x) =

∞∑
n=0

f (n)(0)

n!
(x− c)n = f(c) + f ′(c)(x− c) +

f ′′(c)

2!
(x− c)2 + · · · .

If this polynomial exists, then it equals to f(x) near c.

For example, Taylor series of sinx, cosx, and ex at 0 are

sinx =

∞∑
n=0

1

(2n+ 1)!
x2n+1 = x− 1

3!
x3 +

1

5!
x5 − 1

7!
x7 + · · · ,

cosx =

∞∑
n=0

1

(2n)!
x2n = 1− 1

2!
x2 +

1

4!
x4 − 1

6!
x6 + · · · , and

ex =

∞∑
n=0

1

n!
xn = 1 + x+

1

2!
x2 +

1

3!
x3 + · · · .
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Example 3
Solve y′′ − exy = 0.

Solution We will change ex to a polynomial by using the Taylor series. Since the
Taylor series of ex exists at 0, 0 is an ordinary point. Therefore, there exists a
power series solution centered at 0

y =

∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + · · ·

to the equation

y′′ −
(
1 + x+

1

2!
x2 +

1

3!
x3 + · · ·

)
y = 0.

Substituting the power series solution into the equation gives

y′′ −
(
1 + x+

1

2!
x2 +

1

3!
x3 + · · ·

)
y

=

∞∑
n=2

n(n− 1)anx
n−2 −

(
1 + x+

1

2!
x2 +

1

3!
x3 + · · ·

) ∞∑
n=0

anx
n

= (2a2 + 6a3x+ 12a4x
2 + · · · )−

(
1 + x+

1

2!
x2 +

1

3!
x3 + · · ·

)
(a0 + a1x+ a2x

2 + · · · )

= (2a2 − a0) + (6a3 − a1 − a0)x+

(
12a4 − a2 − a1 −

1

2
a0

)
x2

+

(
20a5 − a3 − a2 −

1

2
a1 −

1

6
a0

)
x3 + · · ·

= 0.

Comparing the coefficients, we get

2a2 − a0 = 0,

6a3 − a1 − a0 = 0,

12a4 − a2 − a1 −
1

2
a0 = 0,

20a5 − a3 − a2 −
1

2
a1 −

1

6
a0 = 0,

and so on. We now divide into two cases, either a0 = 0 or a1=0.
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Case 1: if a0 = 0 If a0 = 0, a2 = 0. We get

• 6a3 − a1 − a0 = 0, so a3 =
a1 + a0

6
=

1

6
a1

• 12a4 − a2 − a1 −
1

2
a0 = 0, so a4 =

2a2 + 2a1 + a0
24

=
1

12
a1

• 20a5 − a3 − a2 −
1

2
a1 −

1

6
a0 = 0, so a5 =

6a3 + 6a2 + 3a1 + a0
120

=
1

30
a1

Case 2: if a1 = 0 If a1 = 0, we get

• 2a2 − a0 = 0, so a2 =
1

2
a0

• 6a3 − a1 − a0 = 0, so a3 =
a1 + a0

6
=

1

6
a0

• 12a4 − a2 − a1 −
1

2
a0 = 0, so a4 =

2a2 + 2a1 + a0
24

=
1

12
a0

• 20a5 − a3 − a2 −
1

2
a1 −

1

6
a0 = 0, so a5 =

6a3 + 6a2 + 3a1 + a0
120

=
1

24
a0

Therefore, we have two solutions

y1(x) = x+
1

6
x3 +

1

12
x4 +

1

30
x5 + · · · and

y2(x) = 1 +
1

2
x2 +

1

6
x3 +

1

12
x4 +

1

24
x5 + · · · .

The general solution is

y = a1y1 + a0y2

= a1

(
x+

1

6
x3 +

1

12
x4 +

1

30
x5 + · · ·

)
+ a2

(
1 +

1

2
x2 +

1

6
x3 +

1

12
x4 +

1

24
x5 + · · ·

)
.
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4.3
The Frobenius Method

The previous section covered power series solutions centered at ordinary points.
But what about singular points? There still is a method of finding the power series
solution, under some conditions.

Definition 4.3.1: Regular Singular Point

Consider a linear 2nd-order differential equation

y′′ + p(x)y′ + q(x)y = 0,

where c is a singular point. Then, c is a regular singular point if (x−c)p(x)

and (x− c)2q(x) are both analytic at c.

We also call c irregular if either (x − c)p(x) or (x − c)2q(x) is not analytic at
c. For example, for any Cauchy-Euler equations of 2nd-order, x = 0 is a regular
singular point. The Frobenius method tells that if c is a regular singular point
of a linear 2nd-order differential equation, then one can find a power series solution
centered at c.

Theorem 4.3.1: Frobenius Method

If x = c is a regular singular point of a linear 2nd-order differential equation

y′′ + p(x)y′ + q(x)y = 0,

then there exists at least one power series solution centered at c, which is

y = (x− c)r
∞∑

n=0

an(x− c)n

= a0(x− c)r + a1(x− c)r+1 + a2(x− c)r+2 + · · · .

where r is a constant.

Here, r is a constant to be determined. The method is as follows:

1. Expand p(x) and q(x) to its power series.

2. Substitute y = (x− c)r
∞∑

n=0

an(x− c)n.

3. Compare the constant term, which gives the indicial equation.

4. Compare the coefficients for each term and find the solution.
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Let p′(x) = (x − c)p(x) and q′(x) = (x − c)2q(x). Then, p′(x) and q′(x) are
analytic at c. Multiplying the original equation by (x− c)2 gives

(x− c)2y′′ + (x− c)p′(x) + q′(x) = 0.

Let p′(x) = p0+p1(x−c)+p2(x−c)2+· · · and q′(x) = q0+q1(x−c)+q2(x−c)2+· · · .
Then, the equation becomes

(x− c)2y′′ + (x− c)
(
p0 + p1(x− c) + p2(x− c)2 + · · ·

)
y′

+
(
q0 + q1(x) + q2(x− c)2 + · · ·

)
y = 0.

Since

y′′ =

∞∑
n=0

(n+ r)(n+ r − 1)an(x− c)n+r−2 and

y′ =

∞∑
n=0

(n+ r)an(x− c)n+r−1,

substituting gives

(x− c)2y′′ + (x− c)
(
p0 + p1(x− c) + p2(x− c)2 + · · ·

)
y′

+
(
q0 + q1(x) + q2(x− c)2 + · · ·

)
y.

= (x− c)2
∞∑

n=0

(n+ r)(n+ r − 1)an(x− c)n+r−2

+ (x− c)
(
p0 + p1(x− c) + p2(x− c)2 + · · ·

)( ∞∑
n=0

(n+ r)an(x− c)n+r−1

)

+
(
q0 + q1(x) + q2(x− c)2 + · · ·

)( ∞∑
n=0

an(x− c)n+r

)
=

(
r(r − 1) + p0r + q0

)
(x− c)r + · · · = 0.

Therefore, the left-hand side should be zero, and the coefficients of each power of
(x− c)r, (x− c)r+1, (x− c)r+2, . . ., should be zero. Comparing the coefficients of
these powers of x− c will give you the coefficients of the series solution a1, a2, . . ..
For the constant term, the equation

r(r − 1) + p0r + q0 = 0

is called the indicial equation, which gives r since p0 and q0 are known. Solving
the equation, this is now divided into four cases, depending on two roots of r.
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Case 1: Distinct Roots not Differing by an Integer
Note that this also includes complex conjugate roots. When the quadratic equation
has two distinct real roots r1 and r2 not differing by an integer, we have two linear
independent solutions

y1(x) = xr1

∞∑
n=0

anx
n = xr1(a0 + a1x+ a2x

2 + · · · ) and

y2(x) = xr2

∞∑
n=0

bnx
n = xr1(b0 + b1x+ b2x

2 + · · · ).

Case 2: Distinct Roots Differing by an Integer
If the two roots satisfy r1 − r2 = n where n is a positive integer, the two linear
independent solutions are

y1(x) = xr1

∞∑
n=0

anx
n = xr1(a0 + a1x+ a2x

2 + · · · ) and

y2(x) = cy1(x) lnx+ xr2

∞∑
n=0

bnx
n

= cxr1(a0 + a1x+ a2x
2 + · · · ) lnx+ xr2(b0 + b1x+ b2x

2 + · · · )

where c is a constant that could be zero.
Case 3: Repeated Real Roots

If two roots are equal, then the two linear independent solutions are

y1(x) = xr1

∞∑
n=0

anx
n = xr1(a0 + a1x+ a2x

2 + · · · ) and

y2(x) = y1(x) lnx+ xr2

∞∑
n=0

bnx
n

= xr1(a0 + a1x+ a2x
2 + · · · ) lnx+ xr2(b0 + b1x+ b2x

2 + · · · ).

Note that one always can find one solution by substituting y1(x) = xr1
∑∞

n=0 anx
n

into the equation, but in cases 2 and 3, the Frobenius method may fail to find a
second solution. If one cannot find a series

∑∞
n=0 bnx

n, then the method fails to
find a second solution. Still, for some cases, one can try using the reduction order
method from section 3.2 to find the second solution. We do not consider the case
when the indicial equation has complex conjugate roots.

Example 1
Solve 2x(x− 1)y′′ − (x+ 1)y′ + y = 0.
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Solution The standard form of the equation is

y′′ − x+ 1

2x(x− 1)
y′ +

1

2x(x− 1)
= 0.

Since x = 0 is a regular singular point of the equation, we try a solution of the
form

y(x) = xr
∞∑

n=0

anx
n.

We have p(x) = −(x + 1)/2x(x − 1) and q(x) = 1/2x(x − 1), so p′(x) = −(x +

1)/2(x− 1) and q′(x) = x/2(x− 1). The Taylor series expansion of p′(x) and q′(x)

at 0 are

p′(x) =
1

2
+ x+ x2 + x3 − · · · and

q′(x) = −1

2
x− 1

2
x2 − 1

2
x3 +

1

2
x4 − · · ·

which gives p0 = 1/2 and q0 = 0. Therefore, the indicial equation is

r(r − 1) +
1

2
r = 0,

which gives two roots r1 = 1/2 and r2 = 0. These two roots do not differ by an
integer. For r1 = 1/2, substituting y1(x) = x1/2

∑∞
n=0 anx

n gives a1 = a2 = a3 =

· · · = 0, and hence
y1(x) =

√
x.

For r2 = 0, substituting y1(x) =
∑∞

n=0 bnx
n gives b0 = b1 = 1 and b2 = b3 = · · · =

0, we have
y2(x) = x+ 1.

Therefore, the general solution is

y(x) = c1y1(x) + c2y2(x) = c1
√
x+ c2(x+ 1).

Example 2
Solve xy′′ + y = 0.

Solution The standard form of the equation is

y′′ +
y

x
= 0,

which x = 0 is a regular singular point. Since p′(x) = 0 and q′(x) = x, we have
p0 = q0 = 0, and hence the indicial equation is r(r − 1) = 0. We have two roots
r = 0, 1 that differ by an integer. For r = 1, substituting y1(x) = x

∑∞
n=0 anx

n,
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we get

y1(x) =

∞∑
n=0

(−1)n

n!(n+ 1)!
xn+1 = x− 1

2
x2 +

1

12
x3 − 1

144
x4 + · · · .

For the second solution, we look for a solution of the form

y2(x) = cy1(x) lnx+

∞∑
n=0

bnx
n.

Substituting y2(x) to the equation and comparing coefficients, we get

y2(x) = −y1(x) lnx+ 1 + x+
x2

4
− x3

9
+ · · · .

Therefore, the general solution is

y(x) = c1y1(x) + c2y2(x)

= c1

(
x− 1

2
x2 +

1

12
x3 − 1

144
x4 + · · ·

)
+ c2

((
x− 1

2
x2 +

1

12
x3 − 1

144
x4 + · · ·

)
lnx

+ 1 + x+
x2

4
− x3

9
+ · · ·

)
.

4.4
Bessel’s Equations

Definition 4.4.1: Bessel’s Equation

A 2nd-order linear differential equation of the form

x2y′′ + xy′ + (x2 − v2)y = 0

where v is a constant is called Bessel’s equation.

Since x = 0 is a regular singular point to the equation, we try a solution of the
form

y(x) =

∞∑
n=0

anx
n+r.

Substituting this into the equation, we have

x2y′′ + xy′ + (x2 − v2)y

=

∞∑
n=0

(n+ r)(n+ r − 1)anx
n+r +

∞∑
n=0

(n+ r)anx
n+r +

∞∑
n=0

anx
n+r+2 − v2

∞∑
n=0

anx
n+r.
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Then, the indicial equation is

r(r − 1) + r − v2 = r2 − v2 = 0,

and r = ±v. Without loss of generality, let v ≥ 0. We have an equation about a1
and a recursion formula

(r + 1)ra1 + (r + 1)a1 − v2a1 = 0

(n+ r)(n+ r − 1)an + (n+ r)an + an−2 − v2an = 0 for n = 2, 3, . . . .

For r = v, the equation and the recursion formula becomes

(2v + 1)a1 = 0

n(n+ 2v)an + an−2 = 0.

We get a1 = 0, and thus an = 0 for odd n. So, we consider the recursion formula
for only even n and get

a2n = − 1

4n(n+ v)
a2n−2 for n = 1, 2, . . . .

Solving the recursion formula, we have

a2n =
(−1)n

22nn!(1 + v)(2 + v) · · · (n+ v)
a0 for n = 1, 2, . . . .

After this, we use the gamma function.

Definition 4.4.2: Gamma Function

For any real number r, the gamma function is defined by

Γ(r + 1) =

∫ ∞

0

tre−t dt for r > −1.

The gamma function is the extension of the factorial to real numbers. The gamma
function satisfies the following properties:

• Γ(r + 1) = rΓ(r)

• Γ(n+ 1) = n! for n ∈ N.

Since a0 could be any number, we let

a0 =
1

2vΓ(1 + v)
.
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Substituting a0 in the recursion formula gives

a2n =
(−1)n

22nn!(1 + v)(2 + v) · · · (n+ v)
a0

=
(−1)n

22nn!(1 + v)(2 + v) · · · (n+ v)
· 1

2vΓ(1 + v)

=
(−1)n

22n+vn!Γ(1 + n+ v)
for n = 1, 2, . . . .

The series solution to the equation is called Bessel’s function.

Definition 4.4.3: Bessel’s Function of the First Kind

The series solution to the Bessel’s equation is called the Bessel’s function
of the first kind and denoted by

Jv(x) = xv
∞∑

n=0

(−1)n

22n+vn!Γ(1 + n+ v)
x2n.

by the same matter, we obtain

J−v(x) = x−v
∞∑

n=0

(−1)n

22n−vn!Γ(1 + n− v)
x2n.

The functions at least converge on the interval (0,∞).

Linear Independence when v is not an integer
One question may come out: are Jv(x) and J−v(x) linear independent? For some
cases, the answer is yes. If v is not an integer, then the two solutions are linear
independent. Before we state the proof directly, we start with some lemmas that
help the proof.

Lemma

Γ

(
1

2

)
=

√
π.

Proof. We have

Γ

(
1

2

)
=

∫ ∞

0

t−1/2e−t dt.

Using the substitution t = u2, we get

Γ

(
1

2

)
= 2

∫ ∞

0

e−u2

du.
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Squaring both sides gives

Γ

(
1

2

)2

=

(
2

∫ ∞

0

e−u2

du

)2

=

(
2

∫ ∞

0

e−u2

du

)(
2

∫ ∞

0

e−v2

dv

)

= 4

∫ ∞

0

∫ ∞

0

e−(u2+v2) du dv.

Using polar coordinates with u = r cos θ and v = r sin θ, we finally get

Γ

(
1

2

)2

= 4

∫ ∞

0

∫ ∞

0

e−(u2+v2) du dv

= 4

∫ π/2

0

∫ ∞

0

e−r2r dr dθ

= 2π

∫ ∞

0

e−r2r dr

= π.

Taking the square root of both sides gives

Γ

(
1

2

)
=

√
π. ■

Lemma

J1/2(x) =

√
2

πx
sinx, and J−1/2(x) =

√
2

πx
cosx.

Proof. Substituting v = 1/2 into the formula of Jv(x) gives

J1/2(x) = x1/2
∞∑

n=0

(−1)n

22n+1/2n!Γ(n+ 3/2)
x2n

=

√
2

x

∞∑
n=0

(−1)n

22n+1n!Γ(n+ 3/2)
x2n+1.
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The denominator in the fraction can be written as

22n+1n!Γ(n+ 3/2) = 22n+1n! · (n+ 1/2)(n− 1/2) · · · (1/2)Γ(1/2)

= (2n+ 1)!Γ(1/2)

= (2n+ 1)!
√
π.

Therefore,

J1/2(x) =

√
2

x

∞∑
n=0

(−1)n

(2n+ 1)!
√
π
x2n+1

=

√
2

πx

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1

=

√
2

πx
sinx.

Substituting v = −1/2 into the formula of Jv(x) gives

J−1/2(x) = x−1/2
∞∑

n=0

(−1)n

22n−1/2n!Γ(n+ 1/2)
x2n

=

√
2

x

∞∑
n=0

(−1)n

22nn!Γ(n+ 1/2)
x2n.

The denominator in the fraction can be written as

22nn!Γ(n+ 1/2) = 22nn! · (n− 1/2)(n− 3/2) · · · (1/2)Γ(1/2)

= (2n)!Γ(1/2)

= (2n)!
√
π.

Therefore,

J−1/2(x) =

√
2

x

∞∑
n=0

(−1)n

(2n)!
√
π
x2n

=

√
2

πx

∞∑
n=0

(−1)n

(2n)!
x2n

=

√
2

πx
cosx. ■
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Theorem 4.4.1: Linear Independence when v is not an integer

Let Jv(x) and J−v(x) be the Bessel functions with order v and −v, respec-
tively. If v > 0 is not an integer, then Jv(x) and J−v(x) are linear indepen-
dent.

Proof. We divide cases into where v − (−v) = 2v is not an integer or an integer.
If 2v is not an integer, then by case 1 of the Frobenius method, Jv(x) and J−v(x)

are linear independent. If 2v is an integer, there are two cases: v being an integer
or a half-odd integer. We prove that Jv(x) and J−v(x) are linear independent if v
is a half-odd integer. If v = 1/2, then the two solutions are

J1/2(x) =

√
2

πx
sinx, and J−1/2(x) =

√
2

πx
cosx.

Since sinx and cosx are linear independent, we have that J1/2(x) and J−1/2(x)

are linear independent. For other half-odd integers, one can see that Jv(x) and
J−v(x) are linearly independent because the first terms of each function are finite
nonzero multiples of xv and x−v. ■

Therefore, we can conclude that the general solution to the Bessel’s equation
when v is not an integer is

y(x) = c1Jv(x) + c2J−v(x).

Bessel’s Equation when v = 0

When v = 0, Bessel’s equation becomes

x2y′′ + xy′ + x2y = 0.

We have one solution J0(x), but since v = −v = 0, we only have one. We need
to find a second solution. By the Frobenius method, we know that the second
solution will be of the form

y2(x) = J0(x) lnx+

∞∑
n=1

bnx
n

since the root of the indicial equation is r2 = 0. The derivatives are

y′2(x) = J ′
0(x) lnx+

J0(x)

x
+

∞∑
n=1

nbnx
n−1

y′′2 (x) = J ′′
0 (x) lnx+ 2

J ′
0(x)

x
− J0(x)

x2
+

∞∑
n=1

n(n− 1)bnx
n−2.
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Substituting the derivatives to the equation gives

x2y′′2 + xy′2 + x2y2 = x2
(
J ′′
0 (x) lnx+ 2

J ′
0(x)

x
− J0(x)

x2
+

∞∑
n=1

n(n− 1)bnx
n−2

)
+ x

(
J ′
0(x) lnx+

J0(x)

x
+

∞∑
n=1

nbnx
n−1

)
+ x2

(
J0(x) lnx+

∞∑
n=1

bnx
n
)

=
(
x2J ′′

0 (x) + xJ ′
0(x) + x2J0(x)

)
lnx+ 2xJ ′

0(x)− J0(x) + J0(x)

+

∞∑
n=1

n(n− 1)bnx
n +

∞∑
n=1

nbnx
n +

∞∑
n=1

bnx
n+2

= 2xJ ′
0(x) +

∞∑
n=1

n(n− 1)bnx
n +

∞∑
n=1

nbnx
n +

∞∑
n=1

bnx
n+2 = 0,

and therefore

2J ′
0(x) +

∞∑
n=1

n(n− 1)bnx
n−1 +

∞∑
n=1

nbnx
n−1 +

∞∑
n=1

bnx
n+1 = 0.

Since

J0(x) =

∞∑
n=0

(−1)n

22n(n!)2
x2n,

we have

J ′
0(x) =

∞∑
n=1

(−1)n

22n−1n!(n− 1)!
x2n−1.

This gives

∞∑
n=1

(−1)n

22n−2n!(n− 1)!
x2n−1 +

∞∑
n=1

n2bnx
n−1 +

∞∑
n=1

bnx
n+1 = 0.

Since the term x0 only occurs in the second term with coefficient b1, b1 = 0.
Comparing the coefficients of even powers x2k. we get a recursion formula

(2k + 1)2b2k+1 + b2k−1 = 0.

Hence bn = 0 for all odd n. Now comparing the coefficients of odd powers x2k+1,
we get

−1 + 4b2 = 0

(−1)k+1

22k(k + 1)!k!
+ (2k + 2)2b2k+2 + b2k = 0
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and therefore

y2(x) = J0(x) lnx+
1

4
x2 − 3

128
x4 +

11

13824
x6 − · · · .

Finally, the general solution to the Bessel’s equation of order zero is

y(x) = c1y1(x) + c2y2(x)

= c1J0(x) + c2

(
J0(x) lnx+

1

4
x2 − 3

128
x4 +

11

13824
x6 − · · ·

)
.

Bessel’s Function of the Second Kind
When v is an integer, we get that Jv(x) and J−v(x) are linear dependent because
J−v(x) = (−1)vJv(x).

Lemma

J−m(x) = (−1)mJm(x) for a positive integer m.

Proof. We have

J−m(x) = x−m
∞∑

n=0

(−1)n

22n−mn!Γ(1 + n−m)
x2n

=

∞∑
n=0

(−1)n

22n−mn!(n−m)!
x2n−m

=

∞∑
n=m

(−1)n

22n−mn!(n−m)!
x2n−m

since Γ(r) is infinite when r < −1, and therefore the value of the terms becomes 0
when n < m. With the substitution n = m+ k, we get

∞∑
n=m

(−1)n

22n−mn!(n−m)!
x2n−m =

∞∑
k=0

(−1)m+k

22k+mk!(m+ k)!
x2k+m

= (−1)m
∞∑
k=0

(−1)k

22k+mk!(m+ k)!
x2k+m

= (−1)mJm(x).

Therefore, we have the result J−m(x) = (−1)mJm(x) for a positive integer m. ■

To find a second series solution when v is an integer, we define a new function,
called the Bessel’s function of the second kind.
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Definition 4.4.4: Bessel’s Function of the Second Kind

If v is not an integer, the function Yv(x) defined by

Yv(x) =
Jv(x) cos vπ − J−v(x)

sin vπ

is called the Bessel’s function of the second kind. We also define

Yn(x) = lim
v→n

Yv(x),

by L’Hôpital’s rule, where n is an integer.

Then, it can be proved that Yv(x) is another solution to Bessel’s equation that is
linear independent to Jv(x). We therefore conclude that the general solution to
the Bessel’s equation is

y(x) = c1Jv(x) + c2Yv(x).

4.5
Legendre’s Equations

Definition 4.5.1: Legendre’s Equation

A 2nd-order linear differential equation of the form

(1− x2)y′′ − 2xy′ + n(n+ 1)y = 0

where n is a constant is called Legendre’s equation.

Since x = 0 is not a singular point to the equation, we try a solution of the
form

y =

∞∑
k=0

akx
k.

Substituting the series into the equation gives

(1− x2)y′′ − 2xy′ + n(n+ 1)y

= (1− x2)

∞∑
k=2

k(k − 1)akx
k−2 − 2x

∞∑
k=1

kakx
k−1 + n(n+ 1)

∞∑
k=0

akx
k

=
(
n(n+ 1)a0 + 2a2

)
+
(
(n− 1)(n+ 2)a1 + 6a3

)
x

+

∞∑
i=2

(
(i+ 1)(i+ 2)ai+2 + (n− i)(n+ i+ 1)ai

)
xi = 0.
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We then obtain a recursion formula

a2 = −n(n+ 1)

2
a0

a3 = − (n− 1)(n+ 2)

6
a1

ai+2 = − (n− i)(n+ i+ 1)

(i+ 1)(i+ 2)
ai.

Therefore, the general solution is

y(x) = a0y1(x) + a1y2(x)

where

y1(x) = 1− n(n+ 1)

2!
x2 +

(n− 2)n(n+ 1)(n+ 3)

4!
− · · · and

y2(x) = x− (n− 1)(n+ 2)

3!
x3 +

(n− 3)(n− 1)(n+ 2)(n+ 4)

5!
x5 − · · · .

The Solution when n = 0 and n = 1

Notice that we have y1(x) = 1 when n = 0. Also, y2(x) becomes

y2(x) = x+
1

3
x3 +

1

5
x5 + · · · .

With the Taylor series expansion

ln(1 + x) = x− 1

2
x2 +

1

3
x3 − · · · ,

We get y2(x) =
(
ln(1 + x)− ln(1− x)

)
/2 because

1

2

(
ln(1 + x)− ln(1− x)

)
=

1

2

((
x− 1

2
x2 +

1

3
x3 − · · ·

)
−
(
− x− 1

2
x2 − 1

3
x3 − · · ·

))
= x+

1

3
x3 +

1

5
x5 = y2(x).

Therefore, the general solution to the Legendre’s equation when n = 0 is

y(x) = a0 + a′1 ln
1 + x

1− x
,

where a′1 = a1/2.
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When n = 1, we have y2(x) = x, and

y1(x) = 1− x2 − 1

3
x4 − 1

5
x6 = 1− 1

2
x ln

1 + x

1− x
.

The general solution to the Legendre’s equation when n = 1 is

y(x) = a0

(
1− 1

2
x ln

1 + x

1− x

)
+ a1x.

Legendre Polynomials
Notice when n is an even integer, then y1(x) terminates, and when n is an odd
integer, then y2(x) terminates. These polynomials are called Legendre polynomials.

Definition 4.5.2: Legendre Polynomials

If n is an integer, then the n-th degree polynomial Pn(x) obtained by termi-
nated y1(x) or y2(x) is called the Legendre polynomial.

The first few Legendre polynomials are:

• P0(x) = 1

• P1(x) = x

• P2(x) =
1

2
(3x2 − 1)

• P3(x) =
1

2
(5x3 − 3x)

• P4(x) =
1

8
(35x4 − 30x2 + 3)

• P5(x) =
1

8
(63x5 − 70x3 + 15x).

These polynomials satisfy the Legendre’s equation for n = 0, 1, . . ., 5, respec-
tively.
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Laplace Transforms
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This chapter covers Laplace transforms that are used to solve ordinary differential
equations. Laplace transform is a useful technique in solving ordinary differential
equations. We first start with the definition.

5.1
Definition of the Laplace Transform

Definition 5.1.1: Laplace Transform

Let f be a function defined for t ≥ 0. Then the integral

L {f(t)} =

∫ ∞

0

e−stf(t) dt

is said to be the Laplace transform of f provided the integral converges.

We usually use the notation

L {f(t)} = F (s), L {g(t)} = G(s), and L {y(t)} = Y (s).

Example 1
Evaluate L {1}.

Solution

L {1} =

∫ ∞

0

e−st · 1 dt = −e−st

s

∣∣∣∣∞
0

= lim
b→∞

−e−sb + 1

s
=

1

s

provided s > 0. If s < 0, the integral diverges.

Example 2
Evaluate L {eat}, where a is any real number.

Solution

L {eat} =

∫ ∞

0

e−steat dt =
e(−s+a)t

−s+ a

∣∣∣∣∞
0

= lim
b→∞

e(−s+a)b − 1

−s+ a
=

1

s− a

provided s > a. If s < a, the integral diverges.
The notation

∫∞
0

f(t) dt is usually used for limb→∞
∫ b

0
f(t) dt. Also, assume

the conditions for s are satisfied.
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Theorem 5.1.1: Linearity of the Laplace Transform

Suppose that there exists L {f1} and L {f2} for s > a1 and s > a2. Then,
for s > max{a1, a2},

L {c1f1 + c2f2} = c1L {f1(t)}+ c2L {f2(t)}..

Proof.

L {c1f1 + c2f2} =

∫ ∞

0

e−st
(
c1f1(t) + c2f2(t)

)
dt

= c1

∫ ∞

0

e−stf1(t) dt+ c2

∫ ∞

0

e−stf2(t) dt

= c1L {f1(t)}+ c2L {f2(t)}.. ■

Some transforms of basic functions are:

L {1} =
1

s

L {tn} =
n!

sn+1
, n = 1, 2, 3 . . . , L {eat} =

1

s− a

L {sin kt} =
k

s2 + k2
, L {cos kt} =

s

s2 + k2

Example 3
Evaluate L {t− t2 + 2e4t}.

Solution

L {t− t2 + 2e4t} = L {t} − L {t2}+ 2L {e4t} =
1

s
+

2

s2
− 2

s− 4
.

Existence and Uniqueness
Of course, the improper integral

∫∞
0

e−stf(t) dt might not exist. Then, when does
the Laplace transform exist? We propose a theorem of a condition for existence.
We first define two terminologies, piecewise continuous and exponential order.

Definition 5.1.2: Piecewise Continuous Function

A function f is piecewise continuous when the number of discontinuous
points in (−∞,∞) are finite, and the function doesn’t have a divergent limit.
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Definition 5.1.3: Exponential Order

A function f is of exponential order when there exists constants a, k > 0

and T > 0 such that
f(t) ≤ keat when t > T .

This means that f should be eventually smaller than an exponential function.
For example, f(t) = tn is of exponential order for any natural number n, but
f(t) = et

2

is not of exponential order.

Theorem 5.1.2: Sufficient Condition for the Existence of Laplace Transform

Suppose f is piecewise continuous on [0,∞) and of exponential order. Then
the Laplace transform of f exists for s > 0.

Proof. We divide [0,∞) to [0, T ) and [T,∞).∫ ∞

0

e−stf(t) dt =

∫ T

0

e−stf(t) dt+

∫ ∞

T

e−stf(t) dt.

We get that
∫ T

0
e−stf(t) dt is finite. Since f is of exponential order, there exists

some constants a, k > 0 and T > 0 such that

|f(t)| ≤ keat for t > T.

Therefore, ∣∣∣∣ ∫ ∞

T

e−stf(t) dt

∣∣∣∣ ≤ ∫ ∞

T

|e−stf(t)| dt

≤ k ·
∫ ∞

0

e−st · eat dt

= k · e
−(s−a)T

s− a
for s > a. ■

We now know about existence, but how about uniqueness? What if there are
two different Laplace transforms for a function? That is actually not the case, and
Laplace transform is unique. However, the proof of uniqueness is beyond this level,
so we do not state it here. From now on, one can assume that Laplace transform
of a function is unique.

Theorem 5.1.3: Uniqueness of the Laplace Transform

Assume that f , g : [0,∞) → R are continuous and of exponential order. If
L {f(t)} = L {g(t)}, the f(t) = g(t).
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5.2
The Inverse Laplace Transform

Definition 5.2.1: Inverse Laplace Transform

If F (s) = L {f(t)} we say that f(t) is the inverse Laplace transform of
F (s).

f(t) = L −1{F (s)}

Unlike the Laplace transform where there is a given formula, inverse transforms
don’t have a specific formula, and it only could be found by knowing Laplace
transforms of functions. This means that inverse transforms of arbitrary functions
cannot be calculated. It is specifically shown in example 1 of this section.

Inverse transforms of some functions are:

L −1

{
1

s

}
= 1

L −1

{
n!

sn+1

}
= tn, n = 1, 2, 3 . . . , L

{
1

s− a

}
= eat

L

{
k

s2 + k2

}
= sin kt, L

{
s

s2 + k2

}
= cos kt

Like the Laplace transform, the inverse transform is also linear.

Theorem 5.2.1: Linearity of the Inverse Transform

The inverse Laplace transform is a linear transform. That is, for constants
c1 and c2,

L −1{c1F (s) + c2G(s)} = c1L
−1{F (s)}+ c2L

−1{G(s)}.

Example 1

Evaluate L −1

{
1

s4

}
.

Solution
L −1

{
1

s4

}
=

1

3!
L −1

{
3!

s4

}
=

1

6
t3.

Example 2

Evaluate L −1

{
2s+ 3

s2 + 9

}
.
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Solution

L −1

{
2s+ 3

s2 + 9

}
= L −1

{
2 · s

s2 + 9
+

3

s2 + 9

}

= 2L −1

{
s

s2 + 9

}
+ L −1

{
3

s2 + 9

}
= 2 cos 3t+ sin 3t.

5.3
Transforms of Derivatives and Integrals

In this section, we see some properties of Laplace transforms and how they can be
used to solve ordinary differential equations.

Theorem 5.3.1: Transforms of Derivatives

Assume that f ′ is piecewise continuous on [0,∞) and f is of exponential
order. Then,

L {f ′(t)} = sF (s)− f(0).

If f, f ′, · · · , f (n−1) are continuous on [0,∞), f is of exponential order, and
f (n)(t) is piecewise continuous on [0,∞), then

L {f (n)(t)} = snF (s)− sn−1f(0)− sn−2f ′(0)− · · · − f (n−1)(0).

Proof. We use induction. For n = 1,

L {f ′(t)} =

∫ ∞

0

e−stf ′(t) dt

= e−stf(t)

∣∣∣∣∞
0

+ s

∫ ∞

0

e−stf(t) dt

= −f(0) + sL {f(t)}

= sF (s)− f(0).

Assume the equation holds for n = k. So,

L {f (k)(t)} = skF (s)− sk−1f(0)− sk−2f ′(0)− · · · − f (k−1)(0).
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For n = k + 1,

L {f (k+1)(t)} =

∫ ∞

0

e−stf (k+1)(t) dt

= e−stf (k)(t)

∣∣∣∣∞
0

+ s

∫ ∞

0

e−stf (k)(t) dt

= −f (k)(0) + sL {f (k)(t)}

= s(skF (s)− sk−1f(0)− sk−2f ′(0)− · · · − f (k−1)(0))− f (k)(0)

= sk+1F (s)− skf(0)− sk−1f ′(0)− · · · − f (k)(0),

which completes the induction. ■

Theorem 5.3.2: Transforms of Integrals

If f is piecewise continuous on [0,∞) and of exponential order, then

L

{∫ t

0

f(τ) dτ

}
=

F (s)

s
, and

L −1

{
F (s)

s

}
=

∫ t

0

f(τ) dτ.

Proof. Let g(t) =
∫ t

0
f(τ) dτ . We first prove that g(t) is of exponential order. Since

f is of exponential order, there exists k, a and τ such that |f(t)| ≤ keat. Then,

|g(t)| =
∣∣∣∣ ∫ t

0

f(τ) dτ

∣∣∣∣ ≤ ∫ t

0

|f(τ)| dτ ≤
∫ t

0

keaτ dτ =
k

a
(eat − 1) <

k

a
eat,

which shows that g is also of exponential order. Also, since d
dtg(t) = f(t), and

g(0) = 0, by the Transforms of Derivatives theorem,

L {f(t)} = L

{
d

dt
g(t)

}
= sL {g(t)}(s)− g(0) = sL {g(t)}.

Dividing by s for both sides gives us

L {g(t)} = L

{∫ t

0

f(τ) dτ

}
=

F (s)

s
. ■

Example 1

Evaluate L −1

{
1

s(s2 + 1)

}
.
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Solution

L −1

{
1

s(s2 + 1)

}
= L −1

{
1

s
· 1

s2 + 1

}

=

∫ t

0

sinτ dτ

= 1− cost.

Example 2

Evaluate L −1

{
1

s2(s2 + 1)

}
.

Solution

L −1

{
1

s2(s2 + 1)

}
= L −1

{
1

s
· 1

s(s2 + 1)

}

=

∫ t

0

(1− cosτ) dτ

= t− sint.

Solving Differential Equations with Laplace Transforms
Laplace transforms can be used in solving ordinary differential equations, especially
initial-value problems. The steps for solving initial-value problems are:

1. Apply the Laplace transform for both sides of the initial-value problem, which
changes y(t) to Y (s).

2. Solve the equation with respect to Y (s).

3. Apply the inverse transform to the solution of Y (s), and you get the solution
y(t) to the initial-value problem.

Example 3
Solve y′ + y = 2cost, y(0) = 1.

Solution Applying Laplace transform to both sides gives you

sY (s)− y(0) + Y (s) = 2 · s

s2 + 1

(s+ 1)Y (s)− 1 = 2 · s

s2 + 1
.
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If you solve for Y (s), you get

Y (s) =
1

s+ 1
+

2s

(s+ 1)(s2 + 1)

=
s

s2 + 1
+

1

s2 + 1
.

If you apply the inverse transform for both sides, you finally obtain

y(t) = cos t+ sin t

which is the solution of the equation given.

5.4
Translation Theorems

First Translation Theorem
Now you know Laplace transforms of some basic functions, but what about prod-
ucts of basic functions? For example, how would you calculate L {e3t sin t} or
L {e−2tt4}? The first translation theorem helps to find the Laplace transform
of a function multiplied by an exponential function.

Theorem 5.4.1: First Translation Theorem

If L {f(t)} = F (s) and a is any real number, then

L {eatf(t)} = F (s− a), and

L −1{F (s− a)} = eatf(t).

We also use the notation F (s)

∣∣∣∣
s→s−a

for F (s− a).

Proof.

L {eatf(t)} =

∫ ∞

0

e−(s−a)tf(t) dt

= F (s− a). ■

Example 1
Evaluate L {e2tt5}.
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Solution

L {e2tt5} = L {t5}s→s−2 =
5!

s6

∣∣∣∣
s→s−2

=
120

(s− 2)6
.

Example 2

Evaluate L −1

{
s

s2 − 4s+ 13

}
.

Solution

L −1

{
s

s2 − 4s+ 13

}
= L −1

{
s+ 2

s2 + 9

∣∣∣∣
s→s−2

}

= L −1

{(
s

s2 + 9
+

2

3
· 3

s2 + 9

)∣∣∣∣
s→s−2

}

= e2t cos 3t+
2

3
e2t sin 3t.

Example 3
Solve y′′ − 2y′ + 1y = tet, y(0) = 0, y′(0) = 4.

Solution Applying Laplace transform to both sides gives you

L {y′′} − 2L {y′}+ L {y} = L {tet}

s2Y (s)− sy(0)− y′(0)− 2Y (s) + 2y(0) + Y (s) =
1

(s− 1)2

If you solve for Y (s), you get

(s2 − 2s+ 1)Y (s) = 4 +
1

(s− 1)2

Y (s) =
4

(s− 1)2
+

1

(s− 1)4
.

If you apply the inverse transform for both sides, you finally obtain

y(t) = 4tet +
1

6
t3et.

Second Translation Theorem
Differential equations we have encountered until now could also be solved by the
variation of parameter method. However, Laplace transforms are used frequently
when some functions are special: functions that are not continuous. The second
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translation theorem is used to solve differential equations involving discontinu-
ous functions.

Definition 5.4.1: Unit Step Function

The unit step function U (t− a) is defined as

U (t− a) =

{
0 t < a

1 t ≥ a.

Another name for this function is the heaviside function. However, we will call it
as unit step function here.

When a function is multiplied by U (t− a), the function becomes 0 for t < a,
and itself for t ≥ a. That is,

f(t)U (t− a) =

{
0 t < a

f(t) t ≥ a.

If you want to shift the function a units to the right, you can take

f(t− a)U (t− a) =

{
0 t < a

f(t− a) t ≥ a.

Also, general piecewise functions of the type

f(t) =

{
g(t) t < a

h(t) t ≥ a.

can be expressed as

f(t) = g(t)−
(
g(t)− h(t)

)
U (t− a).

Similarly, piecewise functions of three cases

f(t) =


g(t) t < a

h(t) a ≤ t < b

g(t) t ≥ b

can be written

f(t) = g(t) +
(
h(t)− g(t)

)[
U (t− a)− U (t− b)

]
.

These expressions of unit step functions can be generalized to functions of several
cases, even more than three.
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Theorem 5.4.2: Second Translation Theorem

If L {f(t)} = F (s) and a > 0, then

L {f(t− a)U (t− a)} = e−asF (s), and

L −1{e−asF (s)} = f(t− a)U (t− a).

This can also be written as

L {g(t)U (t− a)} = e−asL {g(t+ a)}

with g(t) = f(t− a).

Proof.

L {f(t− a)U (t− a)} =

∫ a

0

e−stf(t− a)U (t− a) dt+

∫ ∞

a

e−stf(t− a)U (t− a) dt

=

∫ a

0

0 dt+

∫ ∞

a

e−stf(t− a)U (t− a) dt

=

∫ ∞

a

e−stf(t− a)U (t− a) dt.

Substituting v = t− a gives dv = dt, and

L {f(t− a)U (t− a)} =

∫ ∞

a

e−stf(t− a)U (t− a) dt

=

∫ ∞

a

e−s(v+a)f(v) dv

= e−as

∫ ∞

a

e−svf(v) dv

= e−asL {f(t)}. ■

Corollary : Laplace Transform of a Unit Step Function

L {U (t− a)} = e−asL

{
1

s

}
=

e−as

s
.

Example 4
Evaluate L {cos tU (t− π)}.

Solution

L {cos tU (t− π)} = e−πsL {cos(t+ π)} = −eπsL {cos t} = − s

s2 + 1
e−πs.
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Example 5

Evaluate L −1

{
1

s− 2
e−6s

}
.

Solution
L −1

{
1

s− 2
e−6s

}
= e2(t−6)U (t− 6).

Example 6

Solve y′ − 2y = f(t), y(0) = 0, where f(t) =

{
0 0 ≤ t < π

sin t t ≥ π.

Solution f(t) can be written as f(t) = sin tU (t− π).

Applying Laplace transform to both sides gives you

L {y′} − 2L {y′} = L {sin tU (t− π)}

sY (s)− y(0)− 2Y (s) =
1

s2 + 1
e−πs

If you solve for Y (s), you get

(s− 2)Y (s) = − 1

s2 + 1
e−πs

Y (s) = − 1

(s− 2)(s2 + 1)

=
1

5
· s+ 2

s2 + 1
− 1

5
· 1

s− 2

If you apply the inverse transform for both sides, you finally obtain

y(t) =
1

5
cos(t− π)U (t− π) +

2

5
sin(t− π)U (t− π)− 1

5
e2(t−π)U (t− π)

=

{
0 t < π
1
5 cos(t− π) + 2

5 sin(t− π)− 1
5e

2(t−π) t ≥ π.

The solution of a differential equation including unit step functions may not
be differentiable at some points. In this case, we differentiate piecewise, so that
the function is continuous, and each part of the function satisfies the differential
equation. For the example above, each side of the solution satisfies the differential
equation. Also, the solution is continuous because limt→π y(t) = 0 = y(π).
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5.5
Derivatives and Integrals of Transforms

More properties are stated to make evaluating Laplace transforms easier.

Theorem 5.5.1: Derivatives of Transforms

If L {f(t)} = F (s) and n = 1, 2, 3, · · · , then

L {tnf(t)} = (−1)n
dn

dsn
F (s), and

L −1

{
dn

dsn

}
= (−1)ntnf(t).

Proof. We use induction. For n = 1, since

d

ds
F (s) =

d

ds

∫ ∞

0

e−stf(t) dt

=

∫ ∞

0

∂

∂s

(
e−stf(t)

)
dt (by Leibniz Rule)

=

∫ ∞

0

−e−st · tf(t) dt = −L {tf(t)}, and

L {tf(t)} = − d

ds
L {f(t)}.

Assume the equation holds for n = k. So,

L {tkf(t)} = (−1)k
dk

dsk
F (s).

For n = k + 1,

d

ds

(
(−1)k

dk

dsk
F (s)

)
= (−1)k

dk+1

dsk+1
F (s)

=
d

ds

∫ ∞

0

e−sttkf(t) dt

=

∫ ∞

0

∂

∂s

(
e−sttkf(t)

)
dt (by Leibniz Rule)

=

∫ ∞

0

−e−st · t · tkf(t) dt = −L {tk+1f(t)}.

Therefore,

L {tk+1f(t)} = (−1)k+1 dk+1

dsk+1
,
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which completes the induction. ■

The Leibniz Rule used in the proof is a theorem that interchanges the derivative
operator with the partial derivative operator inside the integral.

d

ds

(∫ b

a

f(x, t) dt

)
=

∫ b

a

∂

∂x
f(x, t) dt.

Theorem 5.5.2: Integrals of Transforms

If L {f(t)} = F (s), then

L

{
f(t)

t

}
=

∫ ∞

s

F (r) dr, and

L −1

{∫ ∞

s

F (r) dr

}
=

f(t)

t
.

Proof.∫ ∞

s

F (r) dr =

∫ ∞

s

(∫ ∞

0

e−rtf(t) dt

)
dr

=

∫ ∞

0

(∫ ∞

s

e−rtf(t) dr

)
dt (Changing the order of integration)

=

∫ ∞

0

e−st

t
f(t) dt

=

∫ ∞

0

e−st f(t)

t
dt

= L

{
f(t)

t

}
. ■

Example 1

Evaluate L −1

{
ln

s+ 3

s− 2

}
.

Solution

Since
d

ds

(
ln

s+ 3

s− 2

)
=

d

ds

(
ln(s+ 3)− ln(s− 2)

)
=

1

s+ 3
− 1

s− 2
= L {−tf(t)},
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−tf(t) = L −1

{
1

s+ 3
− 1

s− 2

}
= e−3t − e2t,

and f(t) =
e2t − e−3t

t
.

Example 2
Solve y′′ + y = tet, y(0) = 0, y′(0) = 1.

Solution Apply Laplace transforms to both sides, we get

L {y′′}+ L {y} = L {tet}

s2Y (s)− sy(0)− y′(0) + Y (s) = − d

ds

1

s− 1

Solve for Y (s), then

(s2 + 1)Y (s) = 1 +
1

(s− 1)2

Y (s) =
1

s2 + 1
+

1

(s2 + 1)(s− 1)2

=
1

2

s

s2 + 1
+

1

s2 + 1
+

1

2

1

(s− 1)2
− 1

2

1

s− 1

Finally, applying the inverse transform to both sides gives you the solution

y(t) =
1

2
cos t+ sin t+

1

2
tet − 1

2
et.

5.6
Convolution

Is the Laplace transform multiplicative? The answer is no, and L {fg} ≠ L {f}L {g}.
Instead, an operation called convolution is developed to multiply two transforms.

Definition 5.6.1: Convolution

If functions f and g are piecewise continuous on the interval [0,∞), then the
convolution of f and g, denoted f ∗ g, is a function defined by

f ∗ g =

∫ t

0

f(τ)g(t− τ) dτ.



5.6. Convolution 103

Example 1
Evaluate t ∗ sin t.

Solution

et ∗ t =
∫ t

0

eτ · (t− τ) dτ

=

∫ t

0

(
teτ − τeτ

)
dτ

= tet − t− tet + et − 1 = et − t− 1.

As written in the beginning of the text, the usage of convolution arises when
multiplying two Laplace transforms. The theorem is called the convolution the-
orem.

Theorem 5.6.1: Convolution Theorem

If L {f(t)} = F (s) and L {g(t)} = G(s), then

L {f ∗ g} = L {f(t)}L {g(t)} = F (s)G(s), and

L −1{F (s)G(s)} = f ∗ g.

Proof.

F (s) = L {f(t)} =

∫ ∞

0

e−sτf(τ) dτ and G(s) = L {g(t)} =

∫ ∞

0

e−sγg(γ) dγ.

Then,

F (s)G(s) =

(∫ ∞

0

e−sτf(τ) dτ

)(∫ ∞

0

e−sγg(γ) dγ

)

=

∫ ∞

0

∫ ∞

0

e−s(τ+γ)f(τ)g(γ) dτ dγ

=

∫ ∞

0

f(τ) dτ

∫ ∞

0

e−s(τ+γ)g(γ) dγ

If we let t = τ + γ, since dt = dγ, so

F (s)G(s) =

∫ ∞

0

f(τ) dτ

∫ ∞

τ

e−stg(t− τ) dt.
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Because f and g are piecewise continuous on [0,∞) and of exponential order,
we can change the order of integration. Therefore,

F (s)G(s) =

∫ ∞

0

e−st dt

∫ t

0

f(τ)g(t− τ) dτ

=

∫ ∞

0

e−st

(∫ t

0

f(τ)g(t− τ) dτ

)
dt

= L {f ∗ g}. ■

Corollary : Transforms of Integrals

L

{∫ t

0

f(τ) dτ

}
=

F (s)

s
.

Proof.

L

{∫ t

0

f(τ) dτ

}
= L

{∫ t

0

f(τ) · 1 dτ
}

= L {f(t) ∗ 1}

= L {f(t)} · L {1}

= F (s) · 1
s

=
F (s)

s
. ■

Example 2

Evaluate L

{∫ t

0

sin τ cos(t− τ) dτ

}
.

Solution

L

{∫ t

0

cos τ sin(t− τ) dτ

}
= L {cos t ∗ sin t}

= L {cos t} · L {sin t}

=
s

s2 + 1
· 1

s2 + 1

=
s

(s2 + 1)2
.
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Example 3

Evaluate L −1

{
1

(s2 + k2)2

}
.

Solution

L −1

{
1

(s2 + k2)2

}
= L −1

{
1

s2 + k2
· 1

s2 + k2

}

=
1

k2
L −1

{
k

s2 + k2
· k

s2 + k2

}
=

1

k2
(sin t ∗ sin t)

=
1

k2

∫ t

0

sin kτ sin k(t− τ) dτ

=
1

k2

∫ t

0

1

2

(
cos k(2τ − t)− cos kt

)
dτ

=
1

2k2

[
1

2k
sin k(2τ − t)− τ cos kt

]t
0

=
sin kt− kt cos kt

2k3
.

Properties of Convolution
Convolution has the following properties:

• The associative property, i.e. f ∗ (g ∗ h) = (f ∗ g) ∗ h

• The commutative property, i.e. f ∗ g = g ∗ f

• The distributive property, i.e. f ∗ (g + h) = f ∗ g + f ∗ h

• f ∗ 0 = 0 ∗ f = 0.

Integral Equations
There are not only differential equations, but also integral equations! Integral
equations are simply functional equations that contain integrals. Solving integral
equations are very similar to solving differential equations. Especially, the convo-
lution theorem is used frequently while solving integral equations. There are also
equations that contain both derivatives and integrals. Such equations are called
integrodifferential equations.



106 Chapter 5. Laplace Transforms

Example 4

Solve y(t) +

∫ t

0

y(τ)et−τ = 3t2.

Solution First, we apply the Laplace transform for both sides.

L {y(t)}+ L

{∫ t

0

y(τ)et−τ

}
= L {3t2}

L {y(t)}+ L {y(t) ∗ et} = L {3t2}

L {y(t)}+ L {y(t)} · L {et} = L {3t2}

Y (s) +
1

s− 1
Y (s) =

6

s3

Then, solving for Y (s) gives

s

s− 1
Y (s) =

6

s3

Y (s) =
6s− 6

s4

=
6

s3
− 6

s4
= 3

2

s3
− 6

s4
.

Therefore, if you apply the inverse transform, you get the solution

y(t) = 3t2 − t3.

5.7
The Dirac Delta Function

Definition 5.7.1: Unit Impulse

The unit impulse function δa(t− t0) is defined as

δa(t− t0) =


0 t < t0 − a
1

2a
t0 − a ≤ t < t0 + a

0 t ≥ t0 + a

where a > 0 and t0 > 0.

The unit impulse function has the following property:∫ ∞

0

δa(t− t0) = 1.
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Definition 5.7.2: Dirac Delta Function

The Dirac delta function δ(t− t0) is defined by the limit

δ(t− t0) = lim
a→0

δa(t− t0).

The Dirac delta function has the following properties:

• δ(t− t0) =

{
∞ t = t0

0 t ̸= t0,
and

•
∫ ∞

0

δ(t− t0) dt = 1.

For usual functions,
∫ ∞

0

δ(t−t0) dt = 0, but actually
∫ ∞

0

δ(t−t0) dt = 1. This

is because the Dirac delta function is not actually a function–it is a distribution.
The Dirac delta function doesn’t contain any meaning itself, but it is characterized
with other functions during integration.

Theorem 5.7.1: Shifting Property of Dirac Delta Function

If f is a continuous function, then∫ ∞

0

δ(t− t0)f(t) dt = f(t0).

Proof. ∫ ∞

0

δ(t− t0)f(t) dt = lim
a→0

∫ ∞

0

δa(t− t0)f(t) dt

= lim
a→0

1

2a

∫ t0+a

t0−a

f(t) dt

By the mean value theorem for integrals, there exists t̃ ∈ (t0 − a, t0 + a) such that∫ t0+a

t0−a

f(t) dt = 2af(t̃).

Finally, ∫ ∞

0

δ(t− t0)f(t) dt = lim
a→0

1

2a

∫ t0+a

t0−a

f(t) dt

= lim
a→0

1

2a

(
2af(t̃)

)
= f(t0)
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Since t̃ → 0 as a → ∞. ■

Theorem 5.7.2: Transform of the Dirac Delta Function

For t0 > 0, L {δ(t− t0)} = e−st0 .

There are two proofs, using the shifting property or the unit step function.
Both proofs are stated.

Proof. If we set f(t) = e−st, then

L {δ(t− t0)} =

∫ ∞

0

δ(t− t0) · e−st dt = e−st0

Since f(t0) = e−st0 . ■

Proof. We first write the Dirac delta function as a combination of unit step func-
tions.

δa(t− t0) =
1

2a

(
U

(
t− (t0 − a)

)
− U

(
t− (t0 + a)

))
.

If we apply the Laplace transform,

L {δa(t− t0)} = L

{
1

2a

(
U

(
t− (t0 − a)

)
− U

(
t− (t0 + a)

))}

=
1

2a

(
e−s(t0−a)

s
− e−s(t0+a)

s

)

= e−st0

(
eas − e−as

2as

)
.

Since the Dirac delta function is the unit impulse when a → 0,

L {δ(t− t0)} = lim
a→0

L {δa(t− t0)}

= e−st0 lim
a→0

(
eas − e−as

2as

)

= e−st0 lim
a→0

(
seas + se−as

2as

)
(by L’Hôpital’s Rule)

= e−st0 . ■

Corollary

L {δ(t− 0)} = 1.
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Solving differential equations containing the Dirac delta function is similar with
those without the Dirac delta function. The Dirac delta function comes out when
one generates a differential equation with a function that is not differentiable at
some point. The Dirac delta function in a differential equation doesn’t contain a
meaning itself, and something comes up only when one applies the Laplace trans-
form. Since an exponential function comes out when you apply Laplace transform
of the Dirac-delta function, the solution of the differential equation containing the
Dirac-delta function contains unit-step functions.

Example 1
Solve y′′ + y = δ(t− π), y(0) = −2, and y′(0) = 0.

Solution If you apply the Laplace transform for both sides, you get

s2Y (s) + 2s+ Y (s)− 0 = e−πs.

Then, solving for Y (s) gives you

(s2 + 1)Y (s) = −2s+ e−πs

Y (s) = −2 · s

s2 + 1
+

e−πs

s2 + 1

Using the inverse transform theorem, you get

y(t) = −2 cos t+ sin(t− π)U (t− π) =

{
−2 cos t t < 2π

−2 cos t− sin t t ≥ π.

5.8
Systems of Differential Equations

Laplace transform can also be applied when solving systems of differential equa-
tions, mostly linear systems. After applying the Laplace transform, one can solve
the system of algebraic equations, and then apply the inverse theorem to get the
solution of the system.

Example 1
Solve

x′ + y = cos 2t

−x+ y′ = sin 2t.

when x(0) = 0 and y(0) = 0.
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Solution Applying Laplace transform for both equations, you obtain the system of
equations

sX(s)− 0 + Y (s) =
s

s2 + 4

−X(s) + sY (s)− 0 =
2

s2 + 4

which is the same as

sX(s) + Y (s) =
s

s2 + 4

−X(s) + sY (s) =
2

s2 + 4
.

Solving the system of algebraic equations of X(s) and Y (s) yields

X(s) =
s2 − 2

(s2 + 1)(s2 + 4)
= − 1

s2 + 1
+

2

s2 + 4

Y (s) =
3s

(s2 + 1)(s2 + 4)
=

s

s2 + 1
− s

s2 + 4
.

Therefore, the solution is

x(t) = − sin t+ sin 2t

y(t) = cos t− cos 2t.



Chapter 6

Systems of Differential Equations
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In Section 2.3 we illustrated how to solve linear equations. Also, in Section 6.8,
some linear systems were introduced. In this chapter, we focus on solving systems
of differential equations, where there are n functions and n variables. We especially
focus on first-order linear systems.

6.1
Theory of Linear Systems

First, what even is a first-order linear system? The term first-order and linear is
the same as those that we defined earlier in Section 1.1.

Definition 6.1.1: First-order System

A first-order system is a set of first-order differential equations

dy1
dt

= f1(t, y1,y2, . . . , yn)

dy2
dt

= f2(t, y1,y2, . . . , yn)

...
...

dyn
dt

= fn(t, y1,y2, . . . , yn).

Definition 6.1.2: First-order Linear System

A first-order system is linear if it can be expressed in the form

dy1
dt

= a11(t)y1 + a12(t)y2 + · · ·+ a1n(t)yn + g1(t)

dy1
dt

= a21(t)y1 + a22(t)y2 + · · ·+ a2n(t)yn + g2(t)

...
...

dy1
dt

= an1(t)y1 + an2(t)y2 + · · ·+ ann(t)yn + g1(t).

The system above can be expressed in matrix form

Y′ = AY +G,
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where

Y =


y1
y2
...
yn

 , A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 , and G =


g1
g2
...
gn

 .

Differentiation is defined entrywise.

Initial-Value Problems
An initial-value problem consists of the linear system

Y′ = AY +G

with an initial condition

Y(x0) =


y1(t0)

y2(t0)
...

yn(t0)

 =


γ1
γ2
...
γn

 = Y0.

In section 1.2 and 3.1, we discussed whether there exists a unique solution to
initial-value problems. There also exist a unique solution for initial-value problems
in first-order linear systems.

Theorem 6.1.1: Existence and Uniqueness Theorem

If every entry of A and G is continuous on an interval containing x0, then
there exists a unique solution to the initial-value problem

Y′ = AY +G

Y(t0) = Y0

on the interval.

Homogeneous Systems
The superposition principle that we have discussed in section 3.1 also holds in
linear systems. There were two kinds of superposition principles: for homogeneous
equations and nonhomogeneous equations. Similar to how we defined earlier, a
linear system is homogeneous if G = 0. That is, if every entry of G is equal to
zero.
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Theorem 6.1.2: Superposition Principle

Let Y1, Y2, . . ., Yn be solutions to the homogeneous linear system

Y′ = AY.

Then, for constants c1, c2, . . ., cn,

c1Y1 + c2Y2 + · · ·+ cnYn

is a solution to the homogeneous linear system.

Proof. Since Y1, Y2, . . ., Yn are solutions to the homogeneous linear system

Y′ = AY,

we have

Y′
1 = AY1

Y′
2 = AY2

...

Y′
n = AYn.

Substituting the linear combination gives

(c1Y1 + c2Y2 + · · ·+ cnYn)
′ = c1Y

′
1 + c2Y

′
2 + · · ·+ cnY

′
n

= c1AY1 + c2AY2 + · · ·+ cnAYn

= A(c1Y1 + c2Y2 + · · ·+ cnYn). ■
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First-order homogeneous linear systems with n unknowns have n linear inde-
pendent solutions.

Theorem 6.1.3: Existence of Linear Independent Solutions

The n solutions

Y1 =


y11
y21
...

yn1

 , Y2 =


y12
y22
...

yn2

 , . . . , Yn =


y1n
y2n
...

ynn


of the homogeneous linear system Y′ = AY are linear independent if and
only if

W (Y1,Y2, . . . ,Yn) =

∣∣∣∣∣∣∣∣∣
y11 y12 · · · y1n
y21 y22 · · · y2n
...

...
. . .

...
yn1 yn2 · · · ynn

∣∣∣∣∣∣∣∣∣ ̸= 0.

Definition 6.1.3: Fundamental Set of Solutions

If there are n linear independent solutions Y1, Y2, . . ., Yn to the homoge-
neous first-order linear system, then the set

{Y1,Y2, . . . ,Yn}

is called the fundamental set of solutions.

Theorem 6.1.4: General Solution - Homogeneous System

If {Y1,Y2, . . . ,Yn} is the fundamental set of solutions to the homogeneous
first-order linear system, then the general solution to the system is

Yc = c1Y1 + c2Y2 + · · ·+ cnYn,

where c1, c2, . . ., cn are constants.

The general solution to the homogeneous system is called complementary solution.

Nonhomogeneous Systems
Recall the definition of a particular solution from section 3.1. Similarly, any solu-
tion to the first-order linear system

Y′ = AY +G

is called particular solution and denoted Yp.
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Theorem 6.1.5: General Solution - Nonhomogeneous System

Let Yp be any particular solution to the nonhomogeneous first-order linear
system

Y′ = AY +G.

Then, the general solution to the system is

Y = Yc +Yp

= c1Y1 + c2Y2 + · · ·+ cnYn +Yp,

where c1, c2, . . ., cn are constants.

Conversion of a linear equation
A linear nth-order differential equation

y(n) = an−1(t)y
(n−1) + · · ·+ a1(t)y

′ + a0(t)y + f(t)

can be converted into a first-order linear system
y1
y2
...

yn−1

yn



′

=


0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0

a0 a1 a2 · · · an−2 an−1




y1
y2
...

yn−1

yn

+


0

0
...
0

f(t)


by making the substitution

y1 = y

y2 = y′

y3 = y′′

...

yn = y(n−1).

Sometimes, solving a first-order linear system will be less complicated than
solving a linear nth-order differential equation.

Example 1
Convert y′′ − 4y′ + 3y = 0 into a first-order linear system.

Solution Taking the substitution y1 = y, y2 = y′, the linear equation is converted
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to the system

y′1 = y2

y′2 =− 3y1 + 4y2,

or (
y1
y2

)′

=

(
0 1

−3 4

)(
y1
y2

)
in matrix form.

6.2
Homogeneous Linear Systems

This section is focused on homogeneous first-order linear systems with constant
coefficients, i.e. systems of the form

Y′ = AY

where the entries in A are constants. We try a solution of the form

Y = Xeλt.

We get Y′ = λXeλt = AXeλt. Since eλt ̸= 0, we get

λX = AX,

which is the eigenvalue problem. With I the identity matrix, rearranging terms
gives

(λI−A)X = 0.

We want a nontrivial vector X, so we must have

det(λI−A) = 0.

The equation above is called the characteristic equation. In a system of n un-
knowns, the characteristic equation will be a nth-order polynomial equation with
respect to λ. One can find the eigenvalue λ by finding the roots of the polynomial,
and the corresponding eigenvector X.

Case 1: Distinct Real Eigenvalues
If the characteristic equation possesses n distinct roots λ1, λ2, . . ., λn, then their
corresponding eigenvectors X1, X2, . . ., Xn are linear independent. The proof for
linear independence is stated below.
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Lemma

For a matrix A, if there exists two different eigenvalues λ to the eigenvalue
problem

λX = AX

then the corresponding eigenvectors are linear independent.

Proof. Suppose there exists two eigenvalues λ1 and λ2, and their corresponding
eigenvectors X1 and X2. If X1 and X2 are linear dependent, then there exists a
constant c such that

X2 = cX1.

Multiplying λ2 to both sides gives

λ2X2 = cλ2X1.

Also, multiplying A to both sides gives

AX2 = cAX1

λ2X2 = cλ1X1.

Therefore, we have
λ2X2 = cλ2X1 = cλ1X1,

which leads to c(λ1 − λ2)X1 = 0. However, since c ̸= 0, λ1 ̸= λ2, and X1 ̸= 0, we
have a contradiction, and the two eigenvectors are linear independent. ■

Therefore, the general solution is

Y = c1X1e
λ1t + c2X2e

λ2t + · · ·+ cnXne
λnt.

Case 2: Repeated Eigenvalues
If an eigenvalue λ is repeated n times as a root. We call this algebraic multiplicity.
If there exists n linear independent eigenvectors for λ, then we are done. However,
in some cases, there would be less than n linear independent eigenvectors. In these
cases, we should find new solutions to make n linear independent eigenvectors. We
use the generalized eigenvector method.

Definition 6.2.1: Geometric Multiplicity

The geometric multiplicity of an eigenvalue is defined by the nullity of
λI −A.

The geometric multiplicity is the number of linear independent eigenvectors.
Therefore, if the geometric multiplicity is not equal to the algebraic multiplicity,
(note that the geometric multiplicity cannot exceed the algebraic multiplicity.) we
need to find more eigenvectors that are linear independent. With knowing that
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X1e
λt is a solution to the system, we try a solution of the form

Y = X1te
λt +X2e

λt.

We have

Y′ = X1e
λt+λX1te

λt + λX2e
λt and

AY = AX1te
λt +AX2e

λt

= λX1te
λt +AX2e

λt.

Therefore,
X1e

λt + λX2e
λt = AX2e

λt

and
X1 + λX2 = AX2.

X2 should satisfy the relation

(A− λI)X2 = X1.

We call X2 the generalized eigenvector of A corresponding to λ. Therefore, for X2

such that (A− λI)X2 = X1,

Y = X1te
λt +X2e

λt

is a solution to the linear system if the characteristic equation has repeated root
λ. Then, X1 and X2 are linear independent.

Lemma

If X1 is the eigenvector corresponding to the eigenvalue λ and X2 is the
generalized eigenvector satisfying

(A− λI)X2 = X1,

then X1 and X2 are linear independent.

Proof. Suppose X1 and X2 are linear dependent. That is, there exists constants
c1 and c2, that are not all zero, satisfying

c1X1 + c2X2 = 0.

Multiplying λI−A, we get

c1(λI−A)X1 + c2(λI−A)X2 = c10+ c2X1

= c2X1 = 0.
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Since c2X1 = 0 but X1 ̸= 0, c2 = 0. Then, c1X1 = 0 and we also have c1 = 0.
However, since c1 and c2 cannot be all zero, we have a contradiction. Therefore,
X1 and X2 are linear independent. ■

We now have obtained two linear independent solutions. We can repeat this
process and get m linear independent solutions:

Y1 = X1e
λt

Y2 = X1te
λt +X2e

λt

Y3 = X1
t2

2
eλt +X2te

λt +X3e
λt

...

Ym = X1
tm−1

(m− 1)!
eλt +X2

tm−2

(m− 2)!
eλt + · · ·+Xmeλt

where

X1 is any eigenvector of λ,

X2 is generalized eigenvector such that (A− λI) X2 = X1,

...

Xm is generalized eigenvector such that (A− λI)Xm = Xm−1.

Finally, the general solution contains

c1Y1 + c2Y2 + · · ·+ cmYm.

Case 3: Complex Conjugate Eigenvalues
If the characteristic equation has complex conjugate roots α ± iβ, we have two
linear independent solutions. Denote these conjugate roots λ and λ̄.

Lemma

If the characteristic equation has complex roots λ and λ̄, then

Xeλt and Xeλ̄t

are both solutions to the homogeneous linear system

Y′ = AY.

Proof. It is evident that Xeλt is a solution. Taking complex conjugation to the
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whole system
Y′ = AY,

we have

Y
′
= AY

= AY

because A only contains real entries. Therefore,

Y = Xeλ̄t

is also a solution. ■

Therefore, the two solutions are

Xeλt = X1e
(α+iβ)t = Xeαt(cosβt+ i sinβt) and

Xeλ̄t = Xe(α−iβ)t = Xeαt(cosβt− i sinβt).

Since these two solutions are linear independent, the linear combinations

Y1 =
1

2
(Xeλt +Xeλ̄t)

=
1

2
(X+X)eαt cosβt− i

2
(−X+X)eαt sinβt and

Y2 =
i

2
(Xeλt −Xeλ̄t)

=
i

2
(−X+X)eαt cosβt+

1

2
(X+X)eαt sinβt

are also solutions to the linear system. If we let

B1 =
1

2
(X+X) = ℜ(X) and

B2 =
i

2
(−X+X) ℑ(X),

then the two solutions to the system are

Y1 = eαt(B1 cosβt−B2 sinβt) and

Y2 = eαt(B2 cosβt+B1 sinβt).

Example 1

Solve Y′ =

(
−1 4

7 2

)
Y.
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Solution The characteristic equation is

det(λI−A) =

∣∣∣∣λ+ 1 4

7 λ− 2

∣∣∣∣ = 0,

which is λ2 − λ − 30 = 0. Solving for λ, we have two distinct eigenvalues λ1 = 6

and λ2 = −5. To find the corresponding eigenvectors, we solve the linear system

(λI−A)X = 0.

For λ1 = 6, we have

(λI−A)X1 =

(
−7 4

7 −4

)
X1 = 0,

and hence

X1 =

(
4

7

)
.

For λ2 = −5, we have

(λI−A)X2 =

(
4 4

7 7

)
X2 = 0,

and hence

X2 =

(
1

−1

)
.

Therefore, the general solution to the system is

Y = c1X1e
λ1t + c2X2e

λ2t

= c1

(
4

7

)
e6t + c2

(
1

−1

)
e−5t.

Example 2

Solve Y′ =

(
3 −1

1 5

)
Y

Solution The characteristic equation is

det(λI−A) =

∣∣∣∣λ− 3 −1

1 λ− 5

∣∣∣∣ = 0,

which is λ2−8λ+16 = 0. Solving for λ, we have λ = 4 with algebraic multiplicity
2. To find the corresponding eigenvector, we solve the linear system

(λI−A)X1 = 0.
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For λ = 4, we have

(λI−A)X1 =

(
−1 −1

1 1

)
X1 = 0,

and hence

X1 =

(
1

−1

)
.

To find a second solution that is linear independent to the first, we let

Y2 = X1te
4t +X2e

4t.

Since X2 is the generalized eigenvector of A, we have a linear system

(λI−A)X2 = X1.

Solving the linear system gives(
−1 −1

1 1

)(
x12

x22

)
=

(
1

−1

)
Since we need any vector X2, we set x12 = 0 and x22 = −1. We get

mathbfX2 =

(
0

−1

)
and therefore the general solution is

Y = c1Y1 + c2Y2

= c1

(
1

−1

)
e4t + c2

((
1

−1

)
te4t +

(
0

−1

)
e4t

)
.

Example 3

Solve Y′ =

(
4 −5

5 4

)
Y.

Solution The characteristic equation is

det(λI−A) =

∣∣∣∣λ− 4 −5

5 λ− 4

∣∣∣∣ = 0,

which is λ2 − 8λ + 41 = 0. Solving for λ, we have λ = 4 ± 5i, which are complex
conjugate roots. To find the corresponding eigenvector, we solve the linear system

(λI−A)X = 0.
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For λ = 4 + 5i, we have

(λI−A)X =

(
5i −5

5 −5i

)
X = 0,

and hence

X =

(
i

1

)
.

Then,

B1 = ℜ(X) =

(
0

1

)
and

B2 = ℑ(X) =

(
1

0

)
.

Therefore, the two solutions are

Y1 = e4t(B1 cos 5t−B2 sin 5t)

= e4t
((

0

1

)
cos 5t−

(
1

0

)
sin 5t

)
and

Y2 = e4t(B2 cos 5t+B1 sin 5t)

= e4t
((

1

0

)
cos 5t+

(
0

1

)
sin 5t

)
,

and the general solution is

Y = c1Y1 + c2Y2

= c1e
4t

((
0

1

)
cos 5t−

(
1

0

)
sin 5t

)
+ c2e

4t

((
1

0

)
cos 5t+

(
0

1

)
sin 5t

)

= c1

(
− sin 5t

cos 5t

)
e4t + c2

(
cos 5t

sin 5t

)
e4t.

6.3
Nonhomogeneous Linear Systems

For a nonhomogeneous first-order linear system

Y′ = AY +G,
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we are interested in the particular solution Yp so that we can conclude that the
general solution is

Y = Yc +Yp

where Yc is the solution to the homogeneous system

Y′ = AY.

Undetermined Coefficient Method
Recall from section 3.5 that we simply guessed the solution to the linear differential
equation

an(x)y
(n) + an−1(x)y

(n−1) + · · ·+ a1(x)y
′ + a0(x)y = f(x)

where f(x) is either a polynomial, exponential function, sine or cosine function,
and finite sums or products of these functions. The method goes the same with
linear systems. Consider a nonhomogeneous linear system

Y′ = AY +G

where the entries of G(t) consist of polynomials, exponential functions, sine or
cosine functions, and finite sums or products of these functions. Then one can
guess the form of the particular solution can compare the coefficients to get the
answer.

Example 1

Solve Y′ =

(
4 2

3 3

)
Y +

(
2t

3t+ 2

)
.

Solution Since

det(λI−A) =

∣∣∣∣λ− 4 −2

−3 λ− 3

∣∣∣∣ ,
the characteristic equation is (λ− 4)(λ− 3)− 6 = λ2 − 7λ+6 = 0. This gives two
distinct eigenvalues λ1 = 1 and λ2 = 6, and their corresponding eigenvectors are

X1 =

(
2

−3

)
and X2 =

(
1

1

)
.

Therefore, the complementary solution is

Yc = c1X1e
λ1t + c2X2e

λ2t = c1

(
2

−3

)
et + c2

(
1

1

)
e6t.
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For the particular solution, since

G(t) =

(
2t

3t+ 2

)
= t

(
2

3

)
+

(
0

2

)
,

we guess the particular solution as

Yp = t

(
a

b

)
+

(
c

d

)
.

Substituting Yp into the equation gives(
a

b

)
= t

(
4 2

3 3

)(
a

b

)
+

(
4 2

3 3

)(
c

d

)
+

(
2t

3t+ 2

)

= t

(
4a+ 2b+ 2

3a+ 3b+ 3

)
+

(
4c+ 2d

3c+ 3d+ 2

)
.

Comparing the entries, we get

4a+ 2b+ 2 = 0 3a+ 3b+ 3 = 0

4c+ 2d = a 3c+ 3d+ 2 = b.

Therefore, a = 0, b = −1, c = 1, d = −2, and the particular solution is

Yp =

(
1

−t− 2

)
.

Finally, the general solution is

Y = c1

(
2

−3

)
et + c2

(
1

1

)
e6t +

(
1

−t− 2

)
.

Even though the undetermined coefficient method seems useful, it is not as
straightforward as the undetermined coefficient method in section 3.5. For ex-
ample, if there are repeated eigenvalues, the form of Yp may be inconsistent. We
introduce a better method, called the variation of parameter method as introduced
in section 3.6.

Variation of Parameter Method
Recall that if

Y1 =


y11
y21
...

yn1

 , Y2 =


y12
y22
...

yn2

 , · · ·Yn =


y1n
y2n
...

ynn


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are n solutions to the homogeneous linear system

Y = AY,

then
c1Y1 + c2Y2 + · · ·+ cnYn

is also a solution. Notice that the general solution can be written as a product of
two matrices

c1Y1 + c2Y2 + · · ·+ cnYn =


c1y11 + c2y12 + · · ·+ cny1n
c1y21 + c2y22 + · · ·+ cny2n

...
c1yn1 + c2yn2 + · · ·+ cnynn



=


y11 y12 · · · y1n
y21 y22 · · · y2n
...

...
. . .

...
yn1 yn2 · · · ynn



c1
c2
...
cn

 = ΨC.

Here, Ψ is called the fundamental matrix.

Definition 6.3.1: Fundamental Matrix

The fundamental matrix of a linear system is defined by

Ψ(t) =


y11 y12 · · · y1n
y21 y22 · · · y2n
...

...
. . .

...
yn1 yn2 · · · ynn

 .

Then, since the fundamental matrix consists of n column vectors which are
solutions to the linear system, the fundamental matrix satisfies

Ψ′ = AΨ.

Lemma

detΨ ̸= 0, and there exists an inverse matrix of Ψ.

Proof. Since every column of Ψ is a linearly independent solution to the equation

X′ = AX,

the determinant of Ψ is equivalent to the Wronskian of the column vectors, which
cannot be zero.

detΨ = W (Y1,Y2, . . . ,Yn) ̸= 0. ■
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Assume that there exists a matrix

U =


u1(t)

u2(t)
...

un(t)


such that the particular solution to the nonhomogeneous linear system

Y = AY +G.

can be expressed by
Yp = ΨU.

Substituting Yp into the system gives

Y′
p = ΨU′ +Ψ′U

= ΨU′ +AΨU

= AΨU+G,

and hence
ΨU′ = G.

Since Ψ has an inverse, U can be found:

U′ = Ψ−1G

U =

∫
Ψ−1G.

Therefore, the particular solution is

Yp = Ψ

∫
Ψ−1G,

and the general solution is

Y = ΨC+Ψ

∫
Ψ−1G

where integration is defined entrywise.

Example 2

Solve Y′ =

(
5 1

2 6

)
Y +

(
−4t+ 6

10t− 4

)
.
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Solution Since

det(λI−A) =

∣∣∣∣λ− 5 −1

−2 λ− 6

∣∣∣∣ ,
the characteristic equation is (λ − 5)(λ − 6) − 2 = λ2 − 11λ + 28 = 0. This gives
two distinct eigenvalues λ1 = 4 and λ2 = 7, and their corresponding eigenvectors
are

X1 =

(
1

−1

)
and X2 =

(
1

2

)
.

Therefore, the complementary solution is

Yc = c1X1e
λ1t + c2X2e

λ2t = c1

(
1

−1

)
e4t + c2

(
1

2

)
e7t.

The fundamental matrix for the system is

Ψ =
(
X1 X2

)
=

(
1 1

−1 2

)
,

and its inverse Ψ−1 is

Ψ−1 =
1

3

(
2 −1

1 1

)
.

Therefore, the particular solution is

Yp = Ψ

∫
Ψ−1G

=

(
1 1

−1 2

)∫
1

3

(
1 1

−1 2

)(
−4t+ 6

10t− 4

)
dt

=
1

3

(
1 1

−1 2

)∫ (
6t+ 2

24t− 14

)
dt

=
1

3

(
1 1

−1 2

)(
3t2 + 2t

12t2 − 14t

)

=
1

3

(
15t2 − 12t

21t2 − 30t

)

=

(
5t2 − 4t

7t2 − 10t

)
,

and the general solution to the system is

Y = Yc +Yp

= c1

(
1

−1

)
e4t + c2

(
1

2

)
e7t +

(
5t2 − 4t

7t2 − 10t

)
.
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6.4
The Exponential Matrix

Recall that the first-order differential equation

y′(x) = cy(x)

has a solution y(x) = ecx. We can approach similarly for linear systems. For a
linear system

X′ = AX

where A has constant entries, we use the exponential matrix method. Recall the
Taylor series of ex:

ex = 1 + x+
1

2!
x2 +

1

3!
x3 + · · · .

The exponential matrix is defined similarly.

Definition 6.4.1: Exponential Matrix

For a n × n matrix with constant entries, the exponential matrix is defined
by

eA = I+A+
1

2!
A2 +

1

3!
A3 + · · · .

Similarly, we define

eAt = I+At+
1

2!
(At)2 +

1

3!
(At)3 + · · ·

= I+At+
1

2!
A2t2 +

1

3!
A3t3 + · · · .

Note that we can commute A and t since A is a matrix and t is a variable, so it’s
a scalar.

Computing Exponential Matrices

Example 1

If A =

(
a 0

0 b

)
, then find eAt.
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Solution The matrix powers of A are

A =

(
a 0

0 b

)

A2 =

(
a2 0

0 b2

)
...

An =

(
an 0

0 bn

)
....

Therefore,

eAt = I+At+
1

2!
A2t2 +

1

3!
A3t3 + · · ·

=

(
1 0

0 1

)
+

(
at 0

0 bt

)
+

1

2!

(
a2t2 0

0 b2t2

)
+

1

3!

(
a3t3 0

0 b3t3

)
+ · · ·

=

1 + at+
1

2!
a2t2 +

1

3!
a3t3 + · · · 0

0 1 + bt+
1

2!
b2t2 +

1

3!
b3t3 + · · ·


=

(
eat 0

0 ebt

)
.

Theorem 6.4.1: Exponential Matrix for Diagonal Matrices

Let A be a diagonal matrix

A =


a11 0 · · · 0

0 a22 · · · 0
...

...
. . .

...
0 0 · · · ann

 .

Then, the exponential matrix for A is

eAt =


ea11t 0 · · · 0

0 ea22t · · · 0
...

...
. . .

...
0 0 · · · eannt

 .
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How do we compute exponential matrices when A is not diagonal? For those
cases, we use the Laplace transform. We will soon prove that the exponential
matrix eAt is a solution to the initial-value problem Y′ = AY, Y(0) = I. If we
let X(s) = L {Y(t)} = L {eAt}, then

L {Y′} = L {AY}

sX(s)−Y(0) = AX(s).

Solving for X(s), we have
X(s) = (sI−A)−1.

Therefore, we can compute the exponential matrix

eAt = L −1{(sI−A)−1}.

Example 2

Compute eAt where A =

(
2 −1

−1 2

)
.

Solution We have

eAt = L −1{(sI−A)−1}

= L −1

{(
s− 2 1

1 s− 2

)−1 }

= L −1




s− 2

(s− 1)(s− 3)

−1

(s− 1)(s− 3)
−1

(s− 1)(s− 3)

s− 2

(s− 1)(s− 3)




=
1

2
L −1


 1

s− 1
+

1

s− 3

1

s− 1
− 1

s− 3
1

s− 1
− 1

s− 3

1

s− 1
+

1

s− 3




=
1

2

(
et + e3t et − e3t

et − e3t et + e3t

)
.

Solving Differential Equations
Derivatives are done entrywise. Since t is a scalar, A does not have any effects
when differentiating with respect to t. This means that, for example,

d

dt
Antn = nAntn−1.
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Lemma

d

dt
eAt = AeAt.

Proof.

d

dt
eAt =

d

dt

(
I+At+

1

2!
A2t2 +

1

3!
A3t3 + · · ·

)
= 0+A+

2

2!
A2t+

3

3!
A3t2 + · · ·

= A

(
I+At+

1

2!
A2t2 +

1

3!
A3t3 + · · ·

)
= AeAt. ■

Theorem 6.4.2: The Fundamental Matrix

For a homogeneous linear first-order system

Y′ = AY

where A consists of constant entries, eAt is a fundamental matrix.

Proof. If is evident that eAt is a solution to the system Y′ = AY. Since Y(0) =

eA0 = I, we have det eA0 ̸= 0. Since the determinant is equal to the Wronskian of
n column vectors, the exponential matrix eA0 is a fundamental matrix. ■

The solution to the nonhomogeneous linear first-order system

Y′ = AY +G

can be expressed as

Y = ΨC+Ψ

∫
Ψ−1G.

Example 3

Solve Y′ =

(
3 0

0 2

)
Y +

(
−3

2

)
.
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Solution We have

Y = ΨC+Ψ

∫
Ψ−1G

=

(
e3t 0

0 e2t

)(
c1
c2

)
+

(
e3t 0

0 e2t

)∫ (
e−3t 0

0 e−2t

)(
−3

2

)
dt

=

(
e3t 0

0 e2t

)(
c1
c2

)
+

(
e3t 0

0 e2t

)∫ (
−3e−3t

2e−2t

)
dt

=

(
e3t 0

0 e2t

)(
c1
c2

)
+

(
e3t 0

0 e2t

)(
e−3t

−e−2t

)

= c1

(
1

0

)
e3t + c2

(
0

1

)
e2t +

(
1

−1

)
.
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6.5
Autonomous Systems

Until now, we have looked at how to solve some linear systems. From now on, we
look at the system’s stability, or how it behaves when t tends to infinity. We focus
on the analysis of autonomous systems.

Autonomous Systems
Definition 6.5.1: Autonomous Systems

A first-order system

dy1
dt

= f1(t, y1,y2, . . . , yn)

dy2
dt

= f2(t, y1,y2, . . . , yn)

...
...

dyn
dt

= f1(t, y1,y2, . . . , yn)

is autonomous if the functions f1, f2, . . ., fn are independent on t. That
is, if the system can be represented as

dy1
dt

= f1(y1,y2, . . . , yn)

dy2
dt

= f2(y1,y2, . . . , yn)

...
...

dyn
dt

= fn(y1,y2, . . . , yn).

If we set

X(t) =


y1
y2
...

yn,

 and g =


g1
g2
...
gn

 ,

the autonomous system can be represented as

X(t)′ = g(X(t)).
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The right-hand side is a vector field. If we set X(t) as the position vector in a
n-dimensional space, then X(t)′ is the velocity vector. The initial condition is
where the particle starts, and is denoted by

X(0) or X0.

This initial-value problem has a unique solution locally.

Theorem 6.5.1: Existence and Uniqueness Theorem

Consider a first-order autonomous system

dy1
dt

= f1(y1,y2, . . . , yn)

dy2
dt

= f2(y1,y2, . . . , yn)

...
...

dyn
dt

= f1(y1,y2, . . . , yn).

with initial condition X(t0) = Xt0 . If f1, f2, . . ., fn are continuous and
have continuous first partial derivatives, then there is a unique solution to
the system on the interval [t0 − ϵ, t0 + ϵ].

Even though the uniqueness is not satisfied globally, we assume that there is a
globally unique solution.

Three Types of Solutions
Given a first-order autonomous system and initial condition X(0), there are three
types of solutions.

Type 1: Critical Point
Critical point solutions are constant solutions or a stationary point for all t. If
the initial condition X0 is a critical point, then the particle stays there. Since the
particle is stationary, X(t)′ = g(X(t)) = 0, and a critical point is a solution to
algebraic equations

g1(X) = 0

g2(X) = 0

...

gn(X) = 0.
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Type 2: Arc
Generally, a solution X(t) is an arc. Note that this curve is simple: it cannot
cross itself. If the curve has an intersection P with itself, then the solution to the
autonomous system with initial condition X(tp) = P will not be unique.

Type 3: Cycle
If a solution is periodic, that is, if there exists a real number T > 0 such that
X(t+ T ) = X(t), then the solution will form a cycle and return to X0.

Example 1
Classify the types of the solutions to the first-order autonomous systems below.

1. x′ = x− y

y′ = x2 + y2 − 8

X(0) = (2, 2)

2. x′ = 5x+ y

y′ = 2x+ 6y

X(0) = (2, 1)

3. x′ = x+ y

y′ = −2x− y

X(0) = (−5, 4)

Solution 1. Substituting the initial condition X(0) = (2, 2) into the system gives

x′ = 2− 2 = 0

y′ = 22 + 22 − 8 = 0,

therefore (2, 2) is a critical point.

2. Substituting the initial condition, one see that the initial condition (2, 1) is not
a critical point. However, since the system is linear, we can actually solve the
system and look for the type of solution. Solving the system gives

x = c1e
4t + c2e

7t

y = −c1e
4t + 2c2e

7t.

Applying the initial condition X(0) = (2, 1), we have c1 = 1, c2 = 1, and the



138 Chapter 6. Systems of Differential Equations

solution to the system is

x = e4t + e7t

y = −e4t + 2e7t.

Since the solution is not periodic, it is an arc.

3. The system is also linear, so solving the system gives

x = c1(sin t− cos t) + c2(− cos t− sin t)

y = c1 cos t+ c2 sin t.

Applying initial condition, we have c1 = 2 and c2 = 3. Therefore, the solution to
the system is

x = −5 cos t− sin t

y = 2 cos t+ 3 sin t,

which is a cycle with period 2π since cos t and sin t is periodic with period 2π.

6.6
Stability of Linear Systems

Consider a linear autonomous system

dx

dt
= ax+ by

dy

dt
= cx+ dy,

or

X′(t) =

(
a b

c d

)
X(t) = AX(t)

in matrix form. We are interested how X(t) behaves as t goes to infinity, or
limt→∞ X(t). Since (x, y) = (0, 0) is a solution to the linear system

dx

dt
= ax+ by = 0

dy

dt
= cx+ dy = 0,

we use (0, 0) as the critical point to analyze. There are three cases. The particle
may return to a critical point, remain close to a critical point if the solution is
periodic, or move away from the critical point. For the first two cases, we call the
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critical point locally stable; for the third case, we call the critical point unstable.
The stability depends on the eigenvalues λ.

The characteristic equation is

det(λI−A) = 0.

Rearranging terms, we have
λ2 − pλ+ q = 0,

where
p = a+ d = tr(A) and q = ad− bc = det(A).

By the quadratic formula, we get that the two eigenvalues are

λ =
p±

√
p2 − 4q

2
.

Case 1: Distinct Real Eigenvalues
If there are two distinct real eigenvalues, i.e. when p2 − 4q > 0, then the general
solution is

X(t) = c1X1e
λ1t + c2X2e

λ2t.

Without loss of generality, let λ1 > λ2. Then, the solution can be expressed as

X(t) = c1X1e
λ1t + c2X2e

λ2t

= eλ1t(c1X1 + c2X2e
(λ2−λ1)t).

Here, we again divide into three cases, depending on the signs of λ1 and λ2.

1. If λ1 and λ2 are both positive, i.e. if p and q are both positive, limt→∞ X(t)

diverges, therefore the critical point is unstable.

2. If λ1 and λ2 are both negative, i.e. if p < 0 and q > 0, then limt→∞ X(t) = 0,
and the critical point is stable.

3. If λ1 is positive and λ2 is negative, i.e. if q < 0, then limt→∞ X(t) = c1X1e
λ1t

if c1 ̸= 0, but limt→∞ X(t) = 0 if c1 = 0, so the critical point is saddle.

Case 2: Repeated Eigenvalues
If there are repeated eigenvalues, i.e. when p2 − 4q = 0, then we divide into two
cases where if there are two linear independent eigenvectors or only one linear
independent eigenvector.

1. If there are two linear eigenvectors, then the general solution is

X(t) = c1X1e
λ1t + c2X2e

λ1t.

If λ1 is negative, i.e. if p < 0, then limt→∞ = 0, and the critical point is
called a degenerate stable node.
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If λ1 is positive, i.e. if p > 0, then limt→∞ diverges, and the critical point is
called a degenerate unstable node.

2. If there is one linear independent eigenvector, then the general solution is

X(t) = c1X1e
λ1t + c2(X1te

λ1t +X2e
λ1t).

If λ1 is negative, i.e. if p < 0, then limt→∞ = 0, and the critical point is
called a degenerate stable node.
If λ1 is positive, i.e. if p > 0, then limt→∞ diverges, and the critical point is
called a degenerate unstable node.

Therefore, we have that the critical point is a degenerate stable node if p < 0

and a degenerate unstable node if p > 0 independently of the number of linear
independent eigenvectors.

Case 3: Complex Conjugate Eigenvalues
If there are complex conjugate eigenvalues α± iβ, i.e. when p2 − 4q < 0, then the
general solution is

X(t) = c1e
αt(B1 cosβt−B2 sinβt) + c2e

αt(B2 cosβt+B1 sinβt).

We now divide into three cases.

1. If the roots are pure imaginary, i.e. if α = 0, then

X(t) = c1(B1 cosβt−B2 sinβt) + c2(B2 cosβt+B1 sinβt),

which is periodic. We then call the critical point center.

2. If the real parts are negative, i.e. if α < 0 and p < 0, then limt→∞ X(t) = 0,
and the critical point is stable spiral.

3. If the real parts are positive, i.e. if α > 0 and p > 0, then limt→∞ X(t)

diverges, and the critical point is unstable spiral.

The cases above can be summarized geometrically. The figure below is called
the stability chart, and it shows the summary of stability depending on p and q.
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Figure 6.1: Stability Chart for Linear Systems

Example 1
Classify the critical point (0, 0) of each linear system.

1. X′(t) =

(
−1 4

7 2

)
X(t)

2. X′(t) =

(
3 −1

1 5

)
X(t)

3. X′(t) =

(
4 −5

5 −4

)
X(t)

4. X′(t) =

(
4 −5

5 4

)
X(t)

Solution 1. We have p = 1 and q = −30. Since q < 0, the critical point is saddle.

2. We have p = 8 and q = 16. Since p2 = 4q and p > 0, the critical point is
degenerate unstable node.

3. We have p = 0 and q = 9. Since p = 0 and q > 0, the critical point is center.

4. We have p = 8 and q = 41. Since p2 < 4q, p > 0, and q > 0, the critical point
is unstable spiral.
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6.7
Stability of Nonlinear Systems

Unlike autonomous linear systems where (0, 0) was always a critical point, au-
tonomous nonlinear systems do not have a specific critical point that works for
every system. There may be none, one, or many critical points. For example, in
example 1 in section 6.4, any point on y = x is a critical point for the first system.
The problem with multiple critical points is this: when the initial condition X0

is not close enough to a critical point X1, then it may go towards another criti-
cal point X2 instead of X1. Therefore, we need to classify critical points. Critical
points for autonomous nonlinear systems can be classified into stable critical points
and unstable critical points.

Definition 6.7.1: Stable Critical Point

A critical point X1 of an autonomous system is a stable critical point if
given any radius ρ > 0, there exists r > 0 such that if the initial condition
satisfies |X0 −X1| < r, then |X(t)−X1| < ρ for all t.

Definition 6.7.2: Asymptotically Stable Critical Point

In the definition above, if limt→∞ X(t) = X1 whenever |X0 −X1| < r, then
the critical point X1 is called an asymptotically stable critical point.

Definition 6.7.3: Unstable Critical Point

A critical point X1 of an autonomous system is an unstable critical point
if there exists some radius ρ > 0 such that for any r > 0, there exists an
initial condition X0 such that |X0 −X1| < r yet |X(t)−X1| ≥ ρ for at least
one t > 0.

Note that if a critical point is asymptotically stable, then it is stable.

Linearization
We start with a first-order equation x′ = g(x). Let x1 be a critical point which
we want to know whether it is stable or not. Since it is hard to solve a nonlinear
equation x′ = g(x), we use the tangent line approximation

g(x) ≈ g′(x1)(x− x1).

Then, the equation becomes

x′ = g(x) ≈ g′(x1)(x− x1).
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Solving for x, we have
x = x1 + eg

′(x1)t.

We can now conclude that if g′(x1) < 0, then x1 is a stable critical point, and if
g′(x1) > 0, then x1 is an unstable critical point.

Example 1
Determine whether the critical point π of a first-order differential equation

x′ = sinx

is stable or unstable.

Solution We have an approximation

x′ = sinx ≈ −(x− π).

Therefore, solving for x gives
x = π + e−t.

Since −1 < 0, the critical point π is stable.
Recall the formula for the tangent plane approximation of a function z = f(x, y)

near (x1, y1)

z ≈ f(x1, y1) + fx(x1, y1)(x− x1) + fy(x1, y1)(y − y1).

For a nonlinear system

dx

dt
= f(x, y)

dy

dt
= g(x, y)

where X1 = (x1, y1) is a critical point satisfying f(x1, y1) = g(x1, y1) = 0, we have
two linearization formulas

x′ = f(x, y) ≈ fx(x1, y1)(x− x1) + fy(x1, y1)(y − y1)

y′ = g(x, y) ≈ gx(x1, y1)(x− x1) + gy(x1, y1)(y − y1).

Therefore, the system can be represented as(
x′

y′

)
=

(
fx(x1, y1) fy(x1, y1)

gx(x1, y1) gy(x1, y1)

)(
x− x1

y − y1

)
,

which can be summarized as

X′ = A(X−X1)
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where A is the Jacobian matrix

A =

(
fx(x1, y1) fy(x1, y1)

gx(x1, y1) gy(x1, y1)

)
and is denoted by A = f(X1). For the Jacobian matrix f(X1), if the real parts
of both eigenvalues are negative, then the critical point is stable, and if there is
an eigenvalue with a positive real part, then the critical point is unstable. This
is because if there is a positive real part α, the solution will contain eαt, which
diverges to infinity when t → ∞.

Example 2
Classify the critical points as stable or unstable.

dx

dt
= x2 + y2 − 20

dy

dt
= x− y2

Solution The critical points are points that satisfy

x2 + y2 − 20 = 0

x− y2 = 0,

which is (4, 2) and (4,−2). For (4, 2), the Jacobian matrix is

f(X1) =

(
fx(4, 2) fy(4, 2)

gx(4, 2) gy(4, 2)

)

=

(
8 4

1 −4

)
.

The eigenvalues are roots to the equation

det(λI−A) = λ2 − 4λ− 36 = 0,

which gives λ = 2 ±
√
40. Since there is an eigenvalue with a positive real part,

the critical point (4, 2) is stable. For (4,−2), the Jacobian matrix is

f(X1) =

(
fx(4,−2) fy(4,−2)

gx(4,−2) gy(4,−2)

)

=

(
8 −4

1 4

)
.
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The eigenvalues are roots to the equation

det(λI−A) = λ2 − 12λ+ 36 = 0,

which gives λ = 6. Since there is an eigenvalue with a positive real part, the
critical point (4,−2) is stable.

Not only classifying critical points as stable or unstable, we’re able to classify
types of critical points, as in section 6.5. The summarized stability chart is drawn
below.

Figure 6.2: Stability Chart for Nonlinear Systems

Notice that center, degenerated stable node, and degenerated unstable node
are not mentioned. This is because the formulas in the borderline p2 = 4q or
q = 0 are obtained by tangent plane approximations, so the actual function may
not be on the borderline. Therefore, we are unable to classify if the characteristic
equation of the linearization satisfies p2 = 4q or q = 0, and we can only say if the
critical point is stable or unstable. Also, if p = 0, we cannot even conclude that
the critical point is stable or unstable. We should use another method. For the
other five cases, the critical point can be categorized the same as what we have
done for linear systems, and they also have the same geometrical properties.
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Example 3
Classify the critical points as stable or unstable.

dx

dt
= x2 − y2

dy

dt
= x+ 2y − 3

Solution The critical points are points that satisfy

x2 − y2 = 0

x+ 2y − 3 = 0,

which is (1, 1) and (−3, 3). For (1, 1), the Jacobian matrix is

f(X1) =

(
fx(1, 1) fy(1, 1)

gx(1, 1) gy(1, 1)

)

=

(
2 −2

1 2

)
.

The eigenvalues are roots to the equation

det(λI−A) = λ2 − 4λ+ 6 = 0.

Since p = 4 and q = 6, we have p > 0, q > 0, and p2 < 4q. Therefore, the critical
point is unstable spiral. For (−3, 3), the Jacobian matrix is

f(X1) =

(
fx(−3, 3) fy(−3, 3)

gx(−3, 3) gy(−3, 3)

)

=

(
−6 −6

1 2

)
.

The eigenvalues are roots to the equation

det(λI−A) = λ2 + 4λ− 6 = 0.

Since p = −4 and q = −6 < 0, the critical point is saddle.
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Example 4
Classify the critical points as stable or unstable.

dx

dt
= x2 − y

dy

dt
= 5x− 2y − 3

Solution The critical points are points that satisfy

x2 − y = 0

5x− 2y − 3 = 0,

which is (1, 1) and
(
3

2
,
9

4

)
. For (1, 1), the Jacobian matrix is

f(X1) =

(
fx(1, 1) fy(1, 1)

gx(1, 1) gy(1, 1)

)

=

(
2 −1

5 −2

)
.

The eigenvalues are roots to the equation

det(λI−A) = λ2 + 1 = 0.

Since p = 0, we cannot classify the type of the critical point. For (3/2, 9/4), the
Jacobian matrix is

f(X1) =

fx

(
3

2
,
9

4

)
fy

(
3

2
,
9

4

)
gx

(
3

2
,
9

4

)
gy

(
3

2
,
9

4

)


=

(
3 −1

5 −2

)
.

The eigenvalues are roots to the equation

det(λI−A) = λ2 − λ− 1 = 0.

Since p = 1 and q = −1 < 0, the critical point is saddle.
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The Phase Plane Method
Then, how should we classify critical points when (p, q) is in the borderline? One
approach can be done, which is called the phase plane method. Consider an
autonomous nonlinear system

dx

dt
= f(x, y)

dy

dt
= g(x, y).

The method is to actually solve the equation. Notice that

dy

dx
=

dy/dt

dx/dt
=

g(x, y)

f(x, y)
.

If we are lucky enough, then we may be able to get a separable first-order equation
and find the solution.

Example 5
Classify the critical point as stable or unstable.

dx

dt
= y2

dy

dt
= x2

Solution The critical points are points that satisfy

y2 = 0

x2 = 0,

which is (0, 0). The Jacobian matrix is

f(X1) =

(
fx(0, 0) fy(0, 0)

gx(0, 0) gy(0, 0)

)

=

(
0 0

0 0

)
.

The eigenvalues are roots to the equation

det(λI−A) = λ2 = 0.

Since p = 0, we cannot classify the type of the critical point. We try to classify
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the critical point by using the phase plane method. Since

dy

dx
=

dy/dt

dx/dt

=
g(x, y)

f(x, y)
=

x2

y2
,

we have a separable equation
y2 dy = x2 dx.

Solving the equation, we get ∫
y2 dy =

∫
x2 dx

1

3
y3 =

1

3
x3 + c

y =
3
√
x3 + c.

One can see that the particle moves away from the origin as t increases. Therefore,
(0, 0) is unstable.

6.8
Limit Cycles and Periodic Solutions

For linear equations, the critical point was a center if the eigenvalues were pure
imaginary. However, for nonlinear systems, we cannot conclude that a critical
point is a center because there might be an error in the linearization. This section
covers periodic solutions to nonlinear systems. The study of periodic solutions in
nonlinear systems involves limit cycles. We let

V(x, y) =
(
f(x, y), g(x, y)

)
the velocity vector field of the autonomous system

x′ = f(x, y)

y′ = g(x, y).

Definition 6.8.1: Limit Cycle

A limit cycle is a closed trajectory having the property that at least one
other trajectory spirals into it, either as time approaches infinity or as time
approaches negative infinity.

If there is a closed curve C, the nearby curves may also behave like C, just
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not closed. They may spiral towards C, spiral away from C, or both. If there is
at least one curve such spirals, then C is called a limit cycle. Limit cycles can be
classified into stable, unstable, or semi-stable.

Definition 6.8.2: Stable, Unstable, and Semi-Stable Limit Cycles

Let C be a limit cycle. If the trajectories nearby C spiral towards C, then
C is a stable limit cycle. If the trajectories nearby C spiral away from C,
then C is an unstable limit cycle. If the trajectories both spiral towards
and away, then C is a semi-stable limit cycle.

Note that stable limit cycles consist of trajectories that spiral into C when time
approaches infinity, and unstable limit cycles consist of trajectories into C when
time approaches negative infinity.

Existence of Limit Cycles
When will limit cycles exist? The Poincare-Bendixson theorem illustrates a con-
dition for a limit cycle to exist.

Definition 6.8.3: Invariant Region

For an autonomous system

x′ = f(x, y)

y′ = g(x, y),

the region R is called an invariant region if the solution X(t) for the system
with the initial condition X(0) = X0 stays inside R whenever X0 is in R.

For invariant regions, the velocity vector V(x, y) =
(
f(x, y), g(x, y)

)
always

points toward the interior of R, so that the particle always stay inside R.

Theorem 6.8.1: Poincare-Bendixson Theorem

Let R be an invariant region bounded by two curves C1 and C2. If R contains
no critical points, then the autonomous system

x′ = f(x, y)

y′ = g(x, y)

has a periodic solution in R.

The proof is omitted since it requires analysis. The idea is that the particle can
never leave R since the velocity vectors point towards the interior of R. Therefore,
the particle should follow a curve or approach a critical point as t → ∞. However,
there aren’t any critical points in R, so the particle should follow a closed curve.
The criterion for invariant regions is stated in the theorem below.
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Theorem 6.8.2: Criterion for Invariant Regions

Let R be a bounded region. For each point (x, y) on the boundary of R, let
V(x, y) be the velocity vector at (x, y) and N(x, y) be the normal vector at
(x, y). For any point (x1, y1) on the boundary of R, if V(x1, y1) ·N(x1, y1) ≥
0, then R is an invariant region.

Proof. Given a region R, let θ(x, y) be the angle between V(x, y) and N(x, y).
Then, for any point (x1, y1) on the boundary of R, we have

V(x1, y1) ·N(x1, y1) = |V(x1, y1)||N(x1, y1)| cos θ(x1, y1) ≥ 0

and cos θ(x1, y1) ≥ 0 since norms are positive. Therefore, 0◦ ≤ θ(x1, y1) ≤ 90◦ for
every point (x1, y1) inside R. This makes the particle impossible to leave R and
hence R is an invariant region. ■

Example 1
Show that the system

x′ = −x+ y + xy

y′ = x2 + y

has a periodic solution.

Solution We claim that the region R bounded with 1/4 ≤ x2 + y2 ≤ 4 is an
invariant region. Since the normal vector is N(x, y) = (−2x, 2y), we have

V(x, y) ·N(x, y) = −2x(−x+ y + xy) + 2y(x2 + y)

= 2x2 − 2xy + 2y2

= x2 + y2 + (x− y)2 ≥ 0,

which tells that R is an invariant region. The critical points are points that satisfy
the equations

−x+ y + xy = 0

x2 + y = 0,

which is (0, 0). Since (0, 0) is not in R, R contains no critical points. Therefore,
the system has a periodic solution in R.
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Non-Existence of Limit Cycles
As well as existence criterions, there are also non-existence criterions.

Theorem 6.8.3: Bendixson-Dulac Theorem

Suppose R is a simply connected region. If there exists a function ϕ(x, y)

with continuous first partial derivatives such that

∂(ϕf)

∂x
+

∂(ϕg)

∂y

doesn’t change its sign in R, then the autonomous system

x′ = f(x, y)

y′ = g(x, y)

doesn’t have a periodic solution in R.

Proof. Assume that there is a periodic solution with period T around a simple
closed curve C inside R, and let D be the region bounded by C. Since ∂(ϕf)/∂x+

∂(ϕg)/∂y does not change its sign within R, we have∫∫
D

(
∂(ϕf)

∂x
+

∂(ϕg)

∂y

)
dx dy ̸= 0.

However, by Green’s theorem, we get∫∫
D

(
∂(ϕf)

∂x
+

∂(ϕg)

∂y

)
dx dy =

∮
C

(ϕf dy − ϕg dx)

=

∫
C

ϕ(f g − g f) dt = 0,

which is a contradiction. Therefore, the system does not have a periodic solution
in R. ■

There aren’t specific rules for setting an appropriate function ϕ(x, y), and one
should construct ϕ(x, y) to make ∂(ϕf)/∂x + ∂(ϕg)/∂y positive or negative. For
some cases, ϕ(x, y) = 1 would work. The corollary when ϕ(x, y) = 1 is called the
Bendixson criterion.
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Corollary : Bendixson Criterion

Let f and g be functions such that ∂f/∂x and ∂g/∂y are continuous on a
region R which is simply connected. If

divV =
∂f

∂x
+

∂g

∂y

doesn’t change its sign in R, then the autonomous system

x′ = f(x, y)

y′ = g(x, y)

doesn’t have a periodic solution inside R.

Example 2
Show that the system

x′ = −xy2 + x+ 2y + 6

y′ = −y3 + x2 − 2y

does not have a periodic solution.

Solution We have

divV =
∂f

∂x
+

∂g

∂y

= −y2 + 1− 3y2 − 2

= −4y2 − 1 < 0.

Since divV is negative in every point, the system does not have a periodic solution
by the Bendixson criterion.

Example 3
Show that the system

x′ = exy − 2x− xy

y′ = y2 + y

does not have a periodic solution.



154 Chapter 6. Systems of Differential Equations

Solution With ϕ(x, y) = y, we have

∂(ϕf)

∂x
+

∂(ϕg)

∂y
= exy2 − 2y − y2 + 3y2 + 2y

= exy2 + 2y2 > 0.

Since ∂(ϕf)/∂x+ ∂(ϕg)/∂y is positive in every point, the system does not have a
periodic solution by the Bendixson-Dulac theorem.

Theorem 6.8.4: Critical Point Criterion

If an autonomous system has a periodic solution around a simple closed curve
C, then there is a critical point in the interior of C.

Notice that the critical point criterion can also be a cycle criterion.

Corollary : Periodic Solution Criterion

If a simply connected region R does not contain any critical points, then
there aren’t any periodic solutions in R.

Example 4
Show that the system

x′ = (x− 1)2 + y2

y′ = x+ y − 2

does not have a periodic solution.

Solution We use the periodic solution criterion. The critical points of the system
should satisfy

(x− 1)2 + y2 = 0

x+ y − 2 = 0.

The only point that satisfy the first equation is (1, 0). However, this point doesn’t
satisfy x+y−2 = 0, and there are no critical points to the system. By the periodic
solution criterion, there aren’t any periodic solutions.
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