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Introduction

This book is about a branch of mathematics that helps us understand how things
change over time. Whether you're studying science, engineering, or math, these
equations are a key tool to make sense of the world around us.

Imagine you want to describe how a population of animals grows, how an
electric circuit behaves, or how a spring moves. Differential equations let us figure
out how things change. They are like a magic wand that helps scientists and
engineers predict the future based on what we know today.

This book is designed for both mathematicians and engineers. If you're a
mathematics enthusiast, this book will provide you with a foundation in differen-
tial equations, helping you in further mathematics related to calculus. If you're an
aspiring engineer, this book will serve as a practical guide to the theory of differ-
ential equations. Engineers use differential equations to solve real-world problems
in fields like electrical engineering, mechanical engineering, and civil engineering.
Even though there isn’t any application example, you’ll benefit from the theoretic
part of the book. No matter which path you’re on, this book will help you to make
the most of differential equations in your academic and professional journey.

The book is organized to make learning differential equations easy and acces-
sible as possible. The chapters are:

1. Introduction to Differential Equations: We'll start with the basics, explaining
what differential equations are.

2. First-Order Equations: We’ll discover how to solve simple differential equa-
tions that involve just one unknown function.

3. Higher-Order Equations: We now move on to more complex equations in-
volving derivatives of higher order.

4. Series Solutions: Some differential equations might not have a solution. We
so learn how to solve tricky equations using series.

5. Laplace Transforms: We will explore a powerful technique for solving equa-
tions differently, making complex problems easier.

6. Systems of Differential Equations: We finally will see how differential equa-
tions can describe interactions between multiple things.
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To this end, we cover the major topics of ordinary differential equations. These
are like the secret codes that help us understand how things change in the world. I
hope the reader gets the most from this book, regardless if they’re mathematicians
or engineers.

I thank Mr. Junwoo Kim for providing a wonderful course on ordinary differ-
ential equations in spring 2023 at Korean Minjok Leadership Academy, without
him the motivation wouldn’t be deep. In addition, I appreciate Yongwook Kim
for proofreading and correcting the book to ensure that the manuscript was error-
free. I also thank Yebin Song for helping me with the English, Seunghyun Lee
for helping me with ETEX, Minsung Ma for the diagram in section 6.6. Finally, I
acknowledge the support and motivation provided by Soeun Kim, Megan Zhang,

Jeonghyeon Seo, Dawon Jeong, and everyone who helped me whilst writing this
book.

Joshua Im
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Suppose you are modeling something in nature. You find out that the change of
the value can be represented by an equation. This is where differential equation
starts.

What is a Differential Equation?

1.1

Definition 1.1.1: Differential Equation
A differential equation is an equation involving functions’ derivatives.

For example, we know that taking the derivative of speed with respect to time
equals to velocity. An equation with speed and velocity is one kind of differential
equation.

There are lots of types of differential equations, but we first can classify those
by types. The two types of differential equations are ordinary differential equa-
tions and partial differential equations. An ordinary differential equation is an
equation with only derivatives of a single variable. In the other hand, equations in-
cluding partial derivatives are called partial differential equations. This book
is focused on ordinary differential equations.

Example 1

Classify these three equations as ordinary differential equations or partial dif-
ferential equations.

1. ¢ =¢"
d

2. —y—l—xy:yz
dx
0z 0z

3. — 4 = =uxy?
8x+8y xy

Solution Equations 1 and 2 are ordinary differential equations because they only
contain derivatives of single variables. However, equation 3 is a partial differential
equation because z is differentiated by both x and y.

Differential equations can also be classified by order.

Definition 1.1.2: Order of a Differential Equation

An order of a differential equation is the order of the highest derivative out
of the derivatives in the equation.

3
For example, the differential equation d—g 4y = 1 has order 3, and the equation
x
Jz 0z

%+a—y =1 has order 1.
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— Definition 1.1.3: Linear Differential Equation

A linear differential equation is an equation such that the coeflicient of
y® for k =1,2,... is independent of y. It can be expressed as

am) (@)™ + an_1(2)y" " + -+ ar ()Y + aoy = g(z),

where ag(z), ai(x), ...an(z) are functions solely dependent on z.

Nonlinear differential equations are simply differential equations that are
not linear. If the coefficient of y*) contains a function of y for some k, then the
equation is nonlinear.

Example 2
Classify the following equations as linear and nonlinear.
Ly dy
1. sme“’@ + oSz = —zxe”

2. gy tay ==z

3. 2%y + (1 -2y ==y

Solution Equation 1 is linear because the coefficients of y”, ¢/, and y are functions
of z. Equation 2 is nonlinear because the coefficient of the term 3" is y. Equation
3 is linear because the equation can be rewritten as z2y” + (1 — 2%)y’ — 2y = 0,
which is linear.

Solutions to Differential Equations

Definition 1.1.4: Solution

A function f is a solution of a differential equation if it satisfies the differ-
ential equation F(z,y,y/,...,y™ = 0.

Solutions may not satisfy the differential equation in all real numbers. Hence,
there needs to be clarification in the interval that the solution actually satisfies
the differential equation.

— Definition 1.1.5: Interval of Definition

The interval of definition of a solution is the interval that the solution
function satisfies the differential equation.

Example 3

Verify that y = €37 is a solution of the differential equation y" — 6y’ 4+ 9y = 0
on the interval I = (—o0, 00).
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Solution
(e37)" — 6(e37) 4 9(e3®) = 9e*” — 18¢3* 4 9¢3* = 0.

In the example above, some might have noticed that y = 0 is a solution besides
y = e3*. Clearly, e3* # 0. The solution that is zero in all real numbers is called
the trivial solution.

= Definition 1.1.6: Trivial Solution

The trivial solution of a differential equation is a solution f = 0 for all real
numbers that satisfy the differential equation.

= Definition 1.1.7: Solution Curve

The solution curve of a differential equation is the graph of a solution f.

The solution curve of a differential equation that has order n should be con-
tinuous, and should be differentiable at least n times.

™ Definition 1.1.8: Implicit Solution

A relation G(z,y) = 0 is an implicit solution if it provides at least one
solution to the differential equation.

™~ Definition 1.1.9: Explicit Solution

An explicit solution to a differential equation is a solution of the form
y = f(x), where f is a function solely dependent on z.

Example 4

Consider the differential equation

dy @

der  y’
The relation 22 + % = 4 is an implicit solution because y = —v/4 — 22 is a
solution to the differential equation, and it also satisfies the relation z2+y? = 4.

Family of Solutions

Notice that from the example above, 22 + 32 = ¢ can be an implicit solution for
an arbitrary positive constant c. This shows that there could be infinitely many
solutions to differential equations. The set of solutions containing a constant is
called a family of solutions.
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— Definition 1.1.10: Family of Solutions

For a constant ¢, the relation G(z,y,c) = 0 is called a one-parameter
family of solutions. For constants ¢y, ¢, ..., ¢,, the relation
G(z,y,c1,¢2,...,¢,) = 0 is called a n-parameter family of solutions.

= Definition 1.1.11: Particular Solution

A solution of a differential equation that doesn’t contain any parameters is
called a particular solution.

Example 5

! is a solution to the differential equation

Verify that y = cia* + coz™
22y — 2y’ — 4y =0,

where ¢, and ¢y are parameters.

Solution
2 dy 4 1 dy 4 1 d?y 4 L
x @(cm +cprt) — 2&:%(01&8 + con )—4@(@1: + ooz )
=ci(122* — 82* — 42*) + 2 (227! + 227 — 4z )
=0.

Usually, all solutions of a differential equation will be in the family of solutions,
but there may be some solutions that are not in the family of the solutions. For
example, the differential equation zy’ = y has y = cx? as a solution, but consider

{EQ X
y(x):{ ) =Y

—x° x<0.

the solution

This solution can not be expressed as y = cx?. Such solutions are called singular
solutions.

Definition 1.1.12: Sinqular Solution

An extra solution that is not in the family of solution is called a singular
solution.
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Initial-Value Problems

1.2

— Definition 1.2.1: Initial-Value Problems

A differential equation

d" / (n—1)
dxn_f(xayaya' ay )
with initial conditions
y(xo0) = co, y’(:z:o) =C1y oveey y(nfl)(xo) = Cn—1

is called an initial-value problem.

For example, the equation

Y= Fww), (o) = co

is a lst-order initial-value problem.

Example 1
Recall from Example 5 from section 1.1 that y = ciz* 4+ coz™
the differential equation

I is a solution to

22y — 2xy’ — 4y = 0.
Solve the initial-value problem

2y —2xy’ — 4y =0, y(1) =3, y/(1) = 2.

Solution Since y(1) = 3, ¢; + ¢ = 3. Differentiating y = ci2* + coz™!, we get

y' = 4c1a® — cox ™2, Therefore, y/(1) = 4¢; — co = 2. Solving the system of linear

equations
c1+co=3
de; —cg =2
gives ¢y = 1, co = 2, and hence the solution to the initial value problem is

y(z) = z* + 2271
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Existence and Uniqueness

For initial-value problems, two fundamental questions arise: existence and unique-
ness. Does the solution exist, and if there exists a solution, is it unique? The
following theorem doesn’t totally clarify the question but gives you an idea of it.

= Theorem 1.2.1: Picard-Lindelof theorem

Let R be a rectangular region defined by R = [a,b] X [c,d] that contains
(xo,90). If f(x,y) is continuous on R and has bounded first partial derivative
with respect to y on R, that is, if 9f /0y is bounded on a < z < b, then the
initial-value problem

% = f(m,y), y(xo) = Yo

has a unique solution on the interval (z¢ — €, zo + €).

This theorem guarantees a unique solution locally, but the condition is not
accessible. We state a similar theorem which is more useful.

= Theorem 1.2.2: Existence and Uniqueness Theorem

Let R be a rectangular region defined by R = [a,b] X [c,d] that contains
(xo0,y0). I f(z,y) and Of/0y is continuous on R, then the initial-value

problem

Y Fww), v =wo

has a unique solution on the interval (z¢ — €, g + €).

Example 2

6

Prove that y = z® is a unique solution to the initial-value problem

dy 2/3
—= = 6ay? =1
2y = 0y y(1)

near x = 1.

Solution First, y = 2° is a solution to the differential equation dy/dx = 6xy?/3
because
dy
dx
Since f(z,y) = 62y*/® and f /0y = 4ay~'/3 is continuous near x = 1, y = x5 is
the unique solution to the initial-value problem.

= 62° = 6z - 25°2/5.

Notice that the converse may not be true: that is, having a unique solution
near (zo,yo) doesn’t guarantee that f(x,y) and 0f /0y is continuous near (xg, yo)-
Note that this theorem only guarantees a unique solution near zy. This means that
the solution to the initial-value problem may not have a unique solution globally.
One example is stated below.
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Example 3
Verify that

is a solution to the initial-value problem

dy 2
-2 = 6xy?/? 1)=1.
2 = Ozy (1)
Solution For = > 0, we have

dy = 62° = 6z - 25%/3,

dx

For z < 0, we have dy/dx = 6xy?*/® = 0. Therefore, y(z) is a solution to the
initial-value problem.

The solution given in example 3 is clearly different from the solution given in
example 2. They are the same near x = 1, but different globally. Keep in mind that
the existence and uniqueness theorem only guarantees a unique solution locally.

Direction Fields

1.3

Consider a first-order equation

df:l/ = f(xay)

dx
Then, at a point (2o, o), f(xo,yo) can be interpreted as the slope of the tangent
line of the solution at (zg,yo). Since the value of f(z,y) changes, the slope of the
tangent line of the solution will change as (xg,yo) changes. The diagram where all
the slopes are drawn for each point is called a direction field.

Example 1

Consider a first-order differential equation
dy _ =
der  y’

For each (xg, yo), the slope of the tangent line of the solution is equal to —z/yo.

The direction field is drawn below.
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dy y

- =—z/y

dx

/ /s s - = — 4+ — ~ ~ N N N\

/ /7 /S s s = = 4+ — ~ ~ N N N\ N

/ 7/ 7/ 7 s - = 4+ = ~ N~ N N N\

/ /7 7/ s - = 4+ = ~ N N N\ A\

/7 /7 7/ s = F+ ~ N N N N\

[ Y A A SN N N N U A Y

[ A TN U U T

x

| \ \ VN NN T s / / /

\ \ \' N\ N\ N~ F+ - S /

A\ N\ N\ NN~ + - s

\ N N N NN~ T+ - s ST

\ N N N NN~ - - s s s S S

AN N NN N N~ - T - - s s 7 /

N AN N ~ ~ - - 4+ - - - - 7 7 7
Note that the direction field is not drawn for y = 0 since it is impossible to
divide by zero.

With direction fields, we can find how the solution behaves. For the example
above, it seems like the slopes form circles. This is because that z2 + 3% = ¢ is
a solution for a constant c¢. One can guess the form of the family of solutions
with the direction field. If there is an initial condition, then the solution can be
approximated. For example, if there was an initial condition y(4) = 3 to the
example above, the implicit solution will be x2 + y? = 25.

Y
e e O . S D N N
/S 7 7/ s s = = F = >~ >~ N N N N\
/7 NN
/7 AN
/7 AREAY
[ Vo
I Vo
X
(I [
o /o
AVEEAN i
AN /7 7/
NN s/
NN N N N SN - - s s s s 7/
NN N NN~ — 4+ - - s

See that the solution curve exactly fits with some elements in the direction field.
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This chapter covers about first-order differential equations. There are several kinds
of first-order differential equations that can be solved analytically.

Separable Equations
21

Definition 2.1.1: Separable Equation

A first-order differential equation is separable if it can be expressed as

W~ gty

The equation is called separable because dy/dx = f(x,y) can be separated as a
multiplication of two functions, one depending only on x, and the other depending
only on y.

Solving Separable Equations

The method for solving separable equations is not difficult. First, change

Y~ ghiy)

to
1

) dy = g(z) dz.

Then, the left-hand side is a function solely depending on y, and the right-hand
side is a function solely depending on x. Integrating both sides gives

/@dyz/g(x)dm and

H(y)+c1 = G(x) + ¢

where H(y) and G(x) are antiderivatives of 1/h(y) and g(x), respectively. Sub-
tracting ¢; in both sides gives you H(y) = G(x) + ¢, where ¢ = ¢3 — ¢1.

Example 1
Solve ydz + (1 + x?)dy = 0.

Solution Since dy/dx = —y/(1 + 2?) = —y - 1/(1 + 2?), the equation is separable.
Rewriting the equation gives



2.1. Separable Equations 13

and by integrating both sides, we get

In|y| = —tan™ z + ¢;.
Therefore,
|y| —e” tan’lz—i-cl
— ecl e~ tan~ 'z
= ce” tan" !z
where e = c.
Example 2
Solve ~ dx + ~ydy =0
olve —xdx + - =0.
3 32U Y
Solution Since dy/dx = —z/y, the equation is separable. Rewriting the equation
gives
rdr = —ydy
/xdm = —/ydy
1 1
5902 = —§y2 +c1

and therefore we get the implicit solution 22 4+ y? = ¢ where 2¢; = ¢. The explicit
solution is

y==+vVc— a2
Notice that = can only be defined where ¢ — 22 > 0, so the interval of definition is

(—+v/¢,v/c). = is not defined at —/c or /c because y(x) should be differentiable.

Example 3
Solve (1 + 2?)dy — 22y dx = 0, y(0) = 2.

Solution The equation is separable. Rewriting the equation gives
22

1423

x2 1
—— _dz= | =d
/1+w3 v /y 4

1
§1n|1+x3| +c =Inlyl|.

1
dr = —dy
Y
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Then,
1 3
|y| o3 In|14+2°|4+c1
1 3
Cy - o5 011427

=cy- |1 +(E3|1/3,

and y = c|[1 + 23|/3, where ¢y = €, and ¢ = Fcy. Since y(0) =2, ¢+ [1+03|'/3 =
¢ = 2. Therefore, we get the solution

y=2[1+ 23|13

Homogeneous Equations of the Same Degree

— Definition 2.1.2: Homogeneous Function of Degree n

If a function f satisfies the property

f(t%,ty) = tnf($,y),

we say that f is homogeneous of degree n.

For example, f(x,y) = ry is homogeneous of degree 2 because f(tx,ty) = t>zy.
This term homogeneous is different with the term where the constant function is
zero. Homogeneous equations can be solved by substitution.

— Definition 2.1.3: Homogeneous Equation of the Same Degree

A first order differential equation is homogeneous of the same degree
where it is of the form

f(xay> d;p—|—g<$,y)dy =0

and f(z,y) and g(x,y) are homogeneous of the same degree.
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Solving Homogeneous Equations of the Same Degree

Let x/y = u so © = yu. Then, f(z,y) = f(yu,y) = y"f(u,1), and g(z,y) =
y"g(u,1). Since x = yu, dr = ydu + udy. This gives

y" fu, 1) dz +y"g(u,1)dy = 0
flu,1)dz+ g(u,1)dy =0

flu, 1) (ydu+udy) + g(u,1)dy =0
yf(u, 1) du+ (uf(u,1) + g(u,1)) dy =0

f(u, 1) !
wf(w1) L gD = Ty W

which is a separable equation of y and u. The procedure after this is the same
with other separable equations. This process can also be done by the substitution

y/x = v, or y = xzv. Either way will result in a separable equation, so there is
no need to worry which substitution you should make. Go for the one that looks
simpler.

Example 4
Solve (22 — y3) dx + xy? dy = 0.

Solution Since z® — y> and zy? are homogeneous of the same degree, we use the
substitution x = yu to change the equation to a separable equation.

v (u® — 1) dx + yPudy =0

(u* —1)dr +udy =0

(u® = 1)(ydu +udy) + udy =0
(u® — )y du+u*dy =0

ud —1
4

1
du = ——dy.
u Y
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Integrating both side leads to the solution

3-1 1
/u4 duz—/fdy
u Y

1 _.
Inu + §u73+ =—lny+c

y® =23(c —3Inx)
y=axvc—3nz,

where ¢ = 3¢;.

Reduction to Separable Form

There are some other substitutions that change the equation into a separable form.
Consider the equation

d
= flaz+by+o),
where a, b, and c¢ are constants. Substituting v = ax + by + ¢ gives
dy
dr f(u).
Since
du dy
o7 ph—Z
dz ~° + dx’

dy _lfdu
dz  b\dz

and the equation can be changed into

which is separable, and can be solved by our usual method of solving separable
equations.
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Example 5

d 1
Solve % = (22 +3y—6)+ 3

Solution Let u = 2z 4+ 3y — 6. Then,

du dy
2 _—94322
dx + dx

dy _lidu
der ~ 3\dzx ’

so the equation can be changed into

1/du 1
(2 _9) =24 =
3<dx ) vy

which is
du
— =3u’+3
dx ut

So the equation is separable. Integrating,

1
arctanu = 3x

Substituting © = 2x + 3y — 6 back to the equation yields

arctan(2z + 3y — 6) = 3z + ¢
2z + 3y — 6 = tan(3z + ¢),

Therefore the solution is

1
y = g(—Qa: + tan(3x + ¢) + 6).
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Exact Equations

2.2

Recall the definition of total differential. If z(z,y) is a function with two variables
such that it has continuous partial derivatives, its total differential is defined as

If z(z,y) = ¢, where ¢ is a constant, then dz = 0. This is where exact equations
start.

= Definition 2.2.1: Exact Equation

A first-order differential equation of the form
M(z,y)dz + N(z,y)dy =0

is called to be exact if the left-hand side is the total differential of some
function z(x,y). That is, if there exists a function z(x,y) such that

0z 0z
% - M(lL‘,y) and 87y - N(l’,y)

Then, how do you know if a first-order differential equation is exact? The
theorem below answers to the question.

— Theorem 2.2.1: Determining Exact Equations

Consider a first-order differential equation
M(z,y)dx + N(z,y)dy =0,

where M(z,y) and N(x,y) have continuous first partial derivatives. The
equation is exact if and only if

OM  ON

oy Oz’

Proof. (=) Since the equation is exact, there exists a function z(x,y) such that

0z 0z

pr M(z,y) and oy N(z,y).

) 0%z
— = is
oy dxdy

Since M (z,y) and N(z,y) have continuous partial derivatives,
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2
continuous, and 8—N = Q is continuous. Therefore,
Oor  Oyox
oM _ ON
oy Oz
because
0%z B 02z
0xdy  Oydx

by Clairaut’s Theorem.

(<) We claim that there exists a function z(x,y) if 9M /0y = ON/Jx. Such func-
tion should have M (z,y) as its first partial derivative with respect to . Therefore,

z(z,y) Z/M(af,y) dz + g(y),

where g(y) is an arbitrary function of y. Therefore, we can guarantee that there
exists a function z if there exists a function g(y) which is independent to z. Since
z(x,y) should have N(x,y) as its first partial derivative with respect to y,

dz 0 I
@_@/M(w,y)dwrg(y)—N(:my),and

g'(y) = N(z,y) — %/M(m,y) dz.

We now claim that g(y) is a function independent to x. Taking partial derivatives
with respect to z,

oo (M - o [arenae) = G2 2( L [ are i)

ON 9 (0
- 8;3_8y<8x/M(x’y)dx)

So there exists a function g(y) that is independent to x. Therefore, there exists a
function z(z,y) such that

0z 0z
%—M(%y) anda—y—N(m,y). [

Solving Exact Equations

The goal of solving an exact equation

M(z,y)dx + N(z,y)dy =0
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is to find a function z(z,y) such that

0z 0z
% - M($7y) and 87y —N({E7y>

so that we can conclude that the solution is z(x,y) = ¢, where ¢ is a constant.

Since 0z/0x = M(x,y),

“(a,y) = / M(z, ) dz + g(y),

where g(y) is a solution solely dependent on y. Taking the partial derivative with
y gives

6% /M(I,y) dz +g'(y) = N(z,y),

which gives the formula of ¢’(y), with knowing [ M (z,y) and N(z,y). Taking the
antiderivative gives g(y), and one can find z(z,y). The method can also be done
the other way, starting with integrating with respect to y first. The solution to
the differential equation is

z(z,y) = c.

Example 1

Solve e® sin e*y? dx — 2 cos e®y = 0.

Solution In this equation, M(x,y) = e sine®y?, and N(x,y) = —2cose®y. Since

oM ON
By = 2e"sine” = e

the equation is exact. Therefore, we need to find z(z,y) such that

0z 0z
% - M(l’,y) and aiy - N(l’,y)

Integrating N (z,y) = —2 cos e”y with respect to y gives
o) = [ Na)dy+ (o)
= —2/cose”ydy—|— f(x)

= —cose®y? + f(x).
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Since 9z/0x = M(z,y),

0z 0 - 2
a%‘8913((;056 Yy +f(:v)>

= e"sine”y? + f'(x) = e”sine”y?,

which gives f/(z) = 0, and f(z) = ¢;. Therefore, the solution is z(x, y) = ¢, which
is
—cose®y? = c.

Example 2
Solve (2% — 2zy)dz + (y* — 2?) dy = 0, y(0) = 2.

Solution In this equation, M(z,y) = 22 — 2xy, and N(z,y) = y> — 22. Since

oM

ON
e, YV
dy .

T oz’
the equation is exact. Therefore, we need to find z(x,y) such that

0z 0z
e M (x,y) and 3y N(z,y).

Integrating M (z,y) = x? — 2xy with respect to x gives

2(a,y) = / N(z,) dz + g(y)
= / (2 — 2zy) dz + g(y)

1
= gx?’ — 2%y + g(y).

Since 0z/0y = N(z,vy),

9z _ 0 (1 5

=—2*+4'(y) =y - 2%,
which gives ¢/(y) = ¥?, and g(y) = %y‘l + c¢1. Therefore, the solution is z(z,y) = ¢,
which is ) 1

§x3 - ny + 1y4 =c.
With the initial condition y(0) = 2, we get ¢ = 4, so the solution of the equation
is

1 1
gacg — 2%y + Zy‘l =4.
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Reduction to Exact Form

There are some equations that look like exact, but actually they’re not. For some
cases, nonexact equations can be changed to exact equations by multiplying some
function to both sides of the equations! For example, the equation

4% dx + 2xy dy = 0

is not exact because IM/dy = 8y, and ON/Ox = 2y, so IM/dy # ON/Ox. How-
ever, multiplying the integrating factor 3 gives

da3y? da + 22y dy = 0,

and this is exact because OM /0y = 83y = ON/dz. Then, how do we find the
integrating factor? Suppose there exists an integrating factor w(z,y) which makes

u(z,y)M(z,y) dz + u(z, y)N(2,y) dy = 0

to an exact equation. Then, by theorem 2.2.1,

Sou( )M () = 2 ue )N )

Uy M +uby = uz N + ulN,
(M, — Np)u = uyN — uy M

Assume that u is a function of only one variable. That is, u only depends on either
x or y. If u only depends on z, then since u, = 0 and u, = du/dzx,

(My — Np)u = ugs N
du My, — Ny
— = ——u.
dx N
Notice that (M, —N,)/N is independent u, hence the equation above is separable.
Solving the equation for u gives

1 M, — N,
du = —Y

u N
M, — N,
1n|u|:/dex

u = ef(My_Nm)/Ndm.

dx
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Since the right-hand side of the original equation is 0, the sign of v doesn’t matter,
and absolute value can be ignored. If v only depends on y, then

(My — Np)u = —uy M

du _ Ny — Myu
dy M '
Since the equation is separable,
1 N, — M,
“du="—""Y4d
U “ M Y

N, — M,
1 = [ =X Y4
n [ul / W
u = ef(NfL'iMy)/]\/[ dy.

Therefore, nonexact first-order differential equations can be changed to exact equa-
tions if (M, — N.)/N depends only on z, or if (N, — M,)/M depends only on y.
One should check if the equation is exact first, before looking for the integrating
factor.

Example 3
Solve (22 + y?) dx + xy dy = 0.

Solution Let M (x,y) = 2% + 9%, and N(x,y) = xy. The equation is not exact
because M, =2y and N, =y, and M, # N,. However, since
M,—N, 2y—y

N xy x

which is a function only depending on z, there exists an integrating factor

ula,y) = e/t

= .
Multiplying x to the equation gives
(23 + xy?) dx + 2%y dy = 0,

which is exact. Solving for z(x,y),
o) = [y dy+ f(a)

= S2%y* + f(2).
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Since 0z/0x = a3 + xy?,
0z 0 (1 54
o 833(237 Yy +f(:c)>
=y’ + f'(2) = 2° + ay?,

which gives f/(z) = 2?, and f(z) = 2%+ ¢;. Therefore, the solution is z(z,y) = c,

which is 1 1
§x2y2 + Zx‘l =c.

Linear Equations

23

— Definition 2.3.1: Linear Equation

A first-order differential equation of the form

is called to be linear.

First-order differential equations that cannot be expressed in this form are called
nonlinear equations. It is also called homogeneous if r(x) = 0 in the formula above.
There are two ways to solve linear equations. Both are stated.

Variation of Parameter Method

First, change the coefficient of dy/dx to 1. This gives

% + f(@)y = g(x)

where f(x) = g(x)/p(x) and g(x) = r(x)/p(x). The idea is to find a solution to

the differential equation
dy
—_— = 0
5, T @y =0,

which is called the complementary solution, and a solution to the differential equa-
tion
dy

i f(@)y = g(z),

which is called the particular solution. They are denoted y. and y,, respectively.
This will be explained later, in section 3.1. Then, the general solution is y. + v,
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because
d d d
7 We +up) + (@) (Ye +yp) = <dxyc + f(w)yc> + (dzyp + f(af)yp>
=0+ g(x) = g(2).
To find the complementary solution, we need to find the solution of the equation
d
% +f(2)y =

Notice that the equation above is separable. Solving for y gives

dy
dx

1dy— —f(z)dx

=—f(z)y

In|y| = /f )dx + ¢

y — Ceil‘f(m) da:,
which is the complementary solution. Let e~ Jf(@)dz — ¢/ (z).
For the particular solution, we will use the variation of parameter method,

which is a process for finding u(z) where we assume y,(z) = u(z)y’(z). This is
explained later in section 3.6. Substituting y, into the equation,

L+ Py = o)

)+ f(@) ) = g(2)

u%y’ + y’%u + f()uy’ = g(x)
u(iy’+f(w) ) +y dd u=g(x)

The first part of the left-hand side is 0 since ¥y’ is a complementary solution.
Therefore, we get
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which is separable. Solving the separable equation gives

du = 9(z) dzr

Y
/du:/gz(jf)dx

u(x) = / g?(f) dz.

Therefore, the general solution to the linear equation is
Y=Y+ Yp

=ce” @ do 4 o= [I(@)do /g(a:)eff(m) 9 .

Integrating Factor Method

The idea of the integrating factor method is this: we want to find an integrating
factor u(z) so that the whole equation multiplied by the integrating factor is the
derivative of u(z)y. To find such u(z), first multiply the whole equation by u(z),
changing the equation to

u(e) B+ flyule)y = ulx)g(o).

We want the left-hand side to be the derivative of u(x)y. That is,

d du y
%( (z)y) —y% ( )%
= (@)Yt f()u(a)
= d ulr)y,
which gives a separable equation
du
— = f(z)u(x)
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Solving for u gives

fdu— f(x)dx

/ du—/f
In |u| = l/ @) d=
u(z) = cped 7@ de,

We only need one integrating factor, so we fix ¢; = 1 to make calculations simple.
To find the solution, since

() = )2 4 fautay = ulxo(),

we can find u(z)y by taking the integral.

u(o)y = [ulx)gle)do +c

Thus, the general solution is

Y= ﬁ (/u(x)g(x) + c) where

u(z) = elf @ de,

Example 1

Solve dy +y=e*
dz

Solution The differential equation is linear, where f(x) = 1 and g(z) = €3*. The
integrating factor is

u(z) = el /@) d

— efldz — e®
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Hence, the solution is

Example 2
dy 37
ve %Y 44y = 2% — &, y(1) = — L.
Sovexdx—&— y=x"—ux, y(l) 35

Solution The differential equation is linear because dividing = to both sides gives

Notice that f(x) = 4/x is continuous on intervals (—oo,0) and (0, 00). Since the
initial value is at 1, we solve the equation in the interval (0,00). The integrating
factor is

u(z) = elf @) d
_ J/a)dz

4

_ e41n\ac| =

Therefore, the general solution is

y:x_4</x4(x2—1)+c)

=21 /(966 —aMdr 4+ ca™?

1 1
=g <7x7 - 5:55) + cx™

1 1
= ?x?’ - 533 +cx™ .

With the initial value y(0) = —37/35, we get ¢ = —1. Hence, the solution for the
equation in the interval (0, c0) is
1, 1
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Reduction to Linear Form

Some nonlinear equations can be reduced to linear form by substituting. One of
them are called the Bernoulli’s equation.

— Definition 2.3.2: Bernoulli's Equation

A first-order nonlinear differential equation of the form

s f(@)y = g(x)y®,

where « is any real number, is called Bernoulli’s equation.

Let u = y'=%. Then du/dx = (1—a)y~“dy/dz. Substituting this to Bernoulli’s
Equation gives
1

ocdu _ «
o Vg T @y =gy

Dividing both sides by y“, the equation is changed into

1 du
1—adr

+ f(@)y' ™ = g(=),

which is linear because it is equivalent to

du
— +(1- =(1- .
(- a)f(e)u = (1 - a)g(@)
Example 3
Solve dy + ¥ _ z2y3.
dr x

Solution The equation is Bernoulli’s Equation, where o = 3. We make the sub-
stitution u = y~2. Then, du/dr = —2y~3dy/dx. Substituting to the original
equation gives

1 d
i3 au Yy 22y’

2V Tdr T a T
ldu 1 _, 9
T2dx T 2Y 7T
%—2 = 227



30 Chapter 2. First-Order Equations

The integrating factor is

plz) = el

— o S/ de

o] = =2,

672 In

Therefore, we get

u:c2</x2(2x2)+c>
= —2x2/da:+cx2

= —22% + ¢z,

Since u = y~2 = —223 4 ca?, solving for y gives
_ 1
Y V—=2x3 + cx?
1

xv/=2zx Fc



Chapter 3

Higher-Order Equations
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This chapter mainly covers linear and nonlinear equations with higher orders.

Theory of the General Solution

3.1

Recall the n-th order linear initial-value problem
any™ + an_1y" Y + -+ ary) + aoy = ()
(o) = yo, ¥ (@0) = y1,+, ¥ (@n1) = Yno1-

This chapter, in general, focuses on this form of equations. Recall that there was
a theorem about the existence and uniqueness of solutions in section 1.2. There is
a similar theorem, stating the existence and uniqueness of a solution.

— Theorem 3.1.1: Existence and Uniqueness of a Solution

Let a,(x), an—1(x), ..., ap(x) be continuous functions on an interval I, and
let a,,(z) # 0, and xg € I. Then, the solution to the differential equation

any"™ + an_1y" Y+ ary +agy = f(x)
y(xo) = yo, ¥ (x0) = y1,- -+, y(nfl)(l’n—l) = Yn—1

exists, and it is unique.

Solving linear differential equations is divided into two parts-the homogeneous
equation, and the nonhomogeneous equation.

Homogeneous Equations

Recall that an equation is homogeneous if f(z) = 0. That is, if a differential
equation is of the form

any™ + an_1y™ "V 4+ ary + agy = 0.

Homogeneous equations usually have solutions with parameters if they do not have
initial conditions.
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— Theorem 3.1.2: Superposition Principle - Homogeneous Equations

Let y1, y2, ..., yx be the solutions to the differential equation
any™ + an_1y™ D 4+ a1y +agy = 0.
Then, the linear combination
Yy =ciy1 + CaY2 + -0+ Crlk

is a solution to the differential equation above, where c¢1, co, ..., ¢ are
constants.

One question may arise: What if y; can be expressed as a linear combination of
other solutions? This is resolved by linear independence.

— Definition 3.1.1: Linear Independence and Dependence

We say that n functions f1, fo, ..., fn are linear dependent is there are
constants ¢y, cg, ..., ¢, such that

cifi teafat - +enfn=0.
If the only constants that satisfy the equation
cifitefat--+enfn=0

iscp = ¢ =+ = ¢, =0, then we say that fi, fa, ..., f, are linear
independent.

For example, fi(z) = cos® z, fo(x) = sin® z, and f3(z) = 1 are linear dependent
because fi(x) + fo(x) — f3(x) = cos?z +sin®z — 1 = 0, but fi(z) = = and
fa(x) = |z| are linear independent because one function cannot be a constant
multiple of another.

— Definition 3.1.2: Wronskian

If the functions f1, fa, ..., fn have at least n — 1 derivatives, then the
determinant of the matrix

fi fa fn

fi oo

fl(n.—l) 2(n-—1) 7(ln.—1)

is called the Wronskian of the functions fy, fo, ..., fn and is denoted by
W(flaf27"'7fn)'
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Lemma

If there exists xg € I such that W(f1, fo,..., fu)(xo) # 0, then f1, fo, ...,
fn are linearly independent.

Proof. We prove the contraposition. Suppose f1, fa, ..., fn are linearly dependent
functions that are at least n — 1 times differentiable. Then, for some kq, ko, ...,
k., that are not all zero,

kifi +kafo+ -+ knfn=0.
Taking the derivative n — 1 times, we get

kifi+kofo+---+knfn=0
kvif] +kofs+--+kof, =0

kU ke fy" Y 4D =0

This is a linear system

1 P In k1 0

fi oo ks 0

fl(nfl) f2(n71) o T(Lnfl) k~n 0
Since ki, ko, ..., k, are not all zero, there exists a nontrivial solution for every
z in (—00,00). Therefore, the determinant of the coefficient matrix, which is the
Wronskian, should be zero. |

The converse is not true: for example, if fi(x) = 2%, and fo(z) = x|z, then
even though W (f1, f2)(x) = 0, f1 and f5 are linear independent. However, if we
let f1, fa, ..., fn be n solutions to the n-th order linear differential equation, the
converse is also true.
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— Theorem 3.1.3: Existence of Linear Independent Solutions

If y1, y2, ..., yn are n solutions to the n-th order linear differential equation
an(2)y™ + ap_1(2)y" D + -+ ar(@)y’ + agy =0,
then these solutions are linear independent if and only if

W(y15y27 s 7y7l)(x) 7& 0

for every x.

The proof for if part is done in the lemma above, and the general proof for only
if part is omitted. To prove the case when n = 2, we use Abel’s identity.

Lemma : Abel’s Identity
If a second-order homogeneous linear differential equation
y' +p(2)y +q(z)y =0
has two solutions y; and y; on an interval I, then
W (y1,92)(@) = W (g1, p2) (o)~ P,
for each x( in the interval I.
Proof. Since W (y1,y2) = y1(2)y2() — 1 (x)y2(x), we have
W' (y1,92) = y1(2)ys (2) + y1 (@)ya (@) — y1(2)ya(@) — v (2)y2(2)
= y1(@)yy () + yi (2)y2(2).
Since y; and ys are solutions to the equation y” + p(x)y’ + q(z)y = 0,
y1(@)ys (x) + i (2)y2(x)
= y1(2)( = p(2)ya(z) — a(@)) + y2(2) (= p(2)y} (z) — q(2))
= —p(y1(@)ys(x) — yi(2)y2(x))
= —pW(y1,y2)(z).

This is a separable equation about W(y1, y2)(x). Solving the equation, we get
W(y1,y2)(x) = Ce Jop)dt .

We now prove the n = 2 case for only if part of theorem 3.1.3.

Proof. We prove the contraposition. Assume that W(yi,y2)(xg) = 0 for some
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xo € I. Then, y1(z)yh(z) — y2(z)y; (z) = 0. Rearranging terms, we get

as long a y1(x) and yo(x) are not zero on every x in I. Without loss of generality,
if y1(z9) = 0 for z¢p € I, then y;(z) is the unique solution to the initial-value
problem

y' +p(@)y +a(z)y =0,  ylzo) =0, y'(z)=0.

Therefore, y;(z) and yo(x) becomes linear dependent. Now, assume that y ()
and yo(x) are never zero on I. Then, integrating both sides gives In|y;(x)| =
In |y2(x)| + ¢, and therefore

y1(z) = Cya()

for any x € I. Therefore, y; and y- are linear dependent. |

= Definition 3.1.3: Fundamental Set of Solutions

If there are n linear independent solutions 1, ys, - . ., ¥, to the homogeneous
linear n-th order differential equation, then the set

{ylayQa e uyn}

is called the fundamental set of solutions.

— Theorem 3.1.4: General Solution - Homogeneous Equations

Let y(x) be a solution to the homogeneous linear n-th order differential equa-
tion
any'™ + an_1y" " - a1y + agy = 0.

Then, there exists constants ¢y, co, ..., ¢, such that

y(x) = cry1(w) + caya(z) + - + cpyn(w),

where {y1,¥2,...,yn} is the fundamental set of solutions.

We only prove the case for n = 2.
Proof. Consider a homogeneous linear 2nd-order differential equation
as(z)y" + a1 (x)y’ + ag(x)y =0

on I, and let {y1,y2} be the fundamental set of solutions. Let ¢t € I such that
W(y1,y2)(t) # 0, and g(x) be a solution to the equation where g(t) = a, and
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g'(t) = b. Then, since y; and yo are the basis of R?, we get

cyi(t) + coya(t) = a

iy (t) + cays(t) = b,

o o] =[)

Therefore, there exists unique ¢; and c¢s. Define

which is equal to

f(x) = c1y1(x) + caya ().

Then, f(z) is a solution to the differential equation, and f(t) = a, and f/(t) = b
Since the solution to the initial-value problem is unique, y(z) = f(x). [

This general solution

y(x) = ciyi(w) + caye(x) + - + cuyn(T)

is called the complementary solution, and is denoted by ..
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Nonhomogeneous Equations

— Theorem 3.1.5: Superposition Principle - Nonhomogeneous Equations

Let Yp,s Ypsy - -5 Yp, be solutions to the differential equation
(n) (n=1) 4 ... ! —
any"™ +an—1y + o+ a1y’ +aoy = fi(z),

any'™ + an 1y Y 4 a4 agy = fa(x),

any™ + an 1y Y+ ary) + aoy = fu(z),

respectively. Then,
Yp =Ypr T Ypp T+ Up,

is the particular solution to the equation

any™ + an_1y" Y+ b ary +agy = fi(x) + fo(x) + -+ fr().

~ Theorem 3.1.6: General Solution - Nonhomogeneous Equations

Let y, be any particular solution to the nonhomogeneous linear n-th order
differential equation

any™ + an1y™ T + -+ ey + agy = f().
Then, the general solution to the differential equation is
Y=Y+ Yp
= (@) + cay2(x) 4 -+ + Cayn(T) + Yp (),

where ¢y, 3, ..., ¢, are constants.

Proof. Let g(z) be any solution to the differential equation above, and y, be any
particular solution.

ang™ + an_19" Y + -+ a9 + aog = f(x)
oy (n—1) / _
nYy + a1y "+ ary, + aoyp = f(x)

Then, since the equation is linear, by the superposition principle, g — y, is the
solution to the equation

any™ + an_1y" Y 4+ ary + agy = f(z) — f(z) = 0.

However, since the equation above is homogeneous, the solution can be expressed
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by
9(x) — yp(x) = crya(z) + caya(z) + - -+ + cnyn(z)
where ¢y, co, ..., ¢, are constants. Therefore,
9(z) = ciyi(z) + caya (@) + - + cayn (@) + yp(2). u
Reduction of Order
3.2

Reduction of order is a method to find another solution to the homogeneous linear
2nd-order differential equation, with knowing one solution. For instance, suppose
there is a homogeneous linear 2nd-order differential equation

y' + f(z)y' + g(x)y = 0.

With knowing g1, the reduction of order method gives a way to find ys.

Reduction of Order Method

Say that y; is a solution to the equation

v+ f(@)y + g(x)y = 0.

We want to find y, that is linear independent to y;. Let ya/y1 = u, so that
Yo = uyi. Since yo should be a solution to the equation above, substituting gives

2

)+ f () + )

(uy) 4 2u'yy +u"y1) + fuyy +uw'y1) + g(uyr)

=u"y1 + ' (2y1 + fyr) +uly! + fyi +gy1)
="y + ' (2y) + fy1)
since yi' + fy; +gy1 = 0. Let w = u'. Then,

uyr +u' (2yy + fyr) = w'yr +w(2y) + fy1) = 0.
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Therefore, the equation becomes separable. Solving the equation for w gives

dw

yigo = —(2y1 + fy)w

1
vy dw = —(2y; + fuy1) dx

. /

w Y1

/
2% | fan
Y1

1 /
/—dw:/—2h—fdx
w Y1

—21n |y | f/f(x)dxqtc’

Since
In|w|+2In|y;| == —/f(x) dr + ¢,
wy% = 6167 ff(w) dw
and
e~ [f(z)dx
w=c——5—
Y1

where ¢; = +e¢. Since, w =/, integrating both sides gives
e~ Jf(@)dzx
u:cl/72 +02d£L'.
Y1

Since ¢; and ¢ are constants, we choose ¢; = 1 and ¢; = 0 so that u does not
become a constant because if u is a constant, then y;(z) and ys(z) are linearly
dependent. Finally, we get

Y2 = UuY1

e~ [f(z)dz
= / ———du.
Y1

Example 1

Find the general solution of y” + 4y = 0, knowing that cos 2z is a solution.
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Solution In this case, f(x) = 0. Substituting y; = cos 2z gives

e Jf(z)dx
Y2 =Y1- / ————dx
Y1

eC
= cos 2z 5 dz
cos? 2x

= e“cos 2z / sec? 2z dx

eC
= — cos 2z tan 2x

c
= —sin2z.
2smx

Therefore, the general solution is

e .
y = c1c082x + - 551n2m

= ¢1 €08 2% + ¢ sin 2z
where co = ¢}, - €¢/2.

Example 2

Find the general solution of y” + 3y’ — 4y = 0, knowing that e is a solution.

Solution In this case, f(z) = 3. Substituting y; = e gives

e—ff(m)dr
Y2 =y1-/72 dx

Therefore, the general solution is

1
Y= cie” +¢ - (‘ 5>

= 1% + coe 7.
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Homogeneous Linear Equations with Constant Coefficients

3.3

This section covers homogeneous linear equations with constant coefficients. That
is, equations of the form

any(n) + an—ly(nil) + o+ aly/ +apy =0,

where a,, a,_1, ..., ag are constants. We first consider the 2nd-order case, where
the equation is
ay” + by +cy = 0.

2nd-Order Equations

Since the equation is linear and 2nd-order, there are two linear independent solu-
tions. We claim that the solutions are of the form e** in general. Substituting
e gives

(aa? + ba + ¢)e™® = 0,

which gives aa? + ba + ¢ = 0 since exponential functions are always positive. This
typical quadratic equation is called the characteristic equation.

Case 1: Distinct Real Roots
When the quadratic equation has two distinct real roots a and 3, then the solu-
tion to the differential equation is e®® and e”*. These two solutions are linearly
independent because one cannot be a constant multiple of another. Therefore, the
general solution is
y=ce® + czeﬁ””.

Case 2: Repeated Real Roots
When the quadratic equation has repeated real roots «, then we know one solution,
but we need one more. To get a second solution, we use the reduction of order
method. Recall the reduction of order formula

e~ ff(a,) dx
Y2 = Y1 / ————dx,
Yi

where y; is a known solution. Here, f(x) = b/a = —2a by Vieta’s formula.
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Substituting e** to the formula gives

e~ Jf(z)dz
Y1

e—f—Qadm
:e(m/idx

62aa:

which is the second solution that is linear independent of the first. Therefore, the
general solution is
y = 1™ 4 cpwe™”.

Case 3: Complex Conjugate Roots
If the quadratic equation has complex roots a + bi, then its conjugate a — bi is also
a root. Therefore, two solutions are e(®t0)% and e(@=) which is a problem since
there are complex numbers in exponents. For this, we use the Euler’s Formula
which states that

e =cosx +isinw.

It follows that

e = cosbz + isinbx and e * = cosbx — isin bz.

Therefore,
Y = e(a—i—bi)x
— 0%, ebiw
= e*(cosbr + isinbr),
and

y2 = e (cosbxr — isinbx).

Since the equation is homogeneous, any linear combination of y; and y is also a
solution. Therefore,
1 axr
Y = §(y1 + y2) = e cosbx and
1 axr s
Y, = §(y1 — yo) = e sinbw
i

are two solutions to the equation. By theorem 3.1.3, these two solutions are linearly
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independent because
W (e cos bx,e™ sin bx)(x)

_ e%® cos bx e sin bx
ae® cosbx — be® sinbx  ae sin bx + be® cos bx

= be?" £ 0.
Therefore, the general solution is
y=c1Y1 + Yo
= c1e* cosbxr + cxe?* sinx
= e (c1 cosbx + co sinbzx).

Example 1

Find the general solution to the equation 3" — k2y = 0, where k is a constant.

Solution The characteristic equation for " — k%y = 0 is o — k? = 0, and therefore
a = k. Thus, the general solution is

y= 16" + coe™FT,

Example 2

Find the general solution to the equation y” — 2ky’ + k%y = 0, where k is a
constant.

Solution The characteristic equation for y” — 2ky’ + k*y = 0 is a® — 2ka + k% = 0,
and therefore a = k of multiplicity 2. Thus, the general solution is

y = e + cozeh®.

Example 3

Find the general solution to the equation 3 + k2y = 0, where k is a constant.

Solution The characteristic equation for " + k%y = 0 is o 4+ k? = 0, and therefore
« = +ik. Thus, the general solution is

y = c1 coskx + cosinkx.

Higher Order Equations

For higher order equations of the form

any(n) + anfly(nil) + e+ aly/ +apy = Oa
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the characteristic equation is
an” 4+ ap_10" M+ +aja+ag =0.

By Fundamental Theorem of Algebra, which states that an equation with
degree n has n solutions in C, one can find n values of «, and thus n linear
independent solutions. If a root a;; has multiplicity k, then the k linear independent

solutions are
y = e pe® gZe® .. ghlem®,

= Theorem 3.3.1: Characteristic Equation with Multiplicity %

If a characteristic equation of a homogeneous linear differential equation with
constant coefficients has a root «; with multiplicity &, then the k linear
independent solutions to the differential equation are

Q1T l,2ealz

y = e xe*?, ..., ol lemT

Proof. Let L(y) = y™ 4 ap_1y" Y +--- + a1y’ + aoy. Then,
L(e*) = (@" 4+ ap_10" "+ -+ aja + ag)e™™.

Let a; be a root with multiplicity k. Then, the characteristic equation can be
expressed as (a — ap)¥ f(a), where f(a) = (o — ag) -+ (@ — an_1). So we get

L(e®®) = (a — aq)* f(a)e™™.

The differentiations with respect to o and x are independent, so differentiating
both sides with respect to a gives

a ax a ax
%L( )= L(aae )
— L(ze™)
= ko= @) (@)™ + (0 — an) - (f(a)e™)

for @« = 1. Therefore, xe®” is also a solution to the differential equation. Re-

peating this procedure k — 1 times, the right side is always zero since it contains
a o — «aq term. The degree of x on the left side increases every time, taking the

1,01

derivative of the left side. Therefore, z*e“* is a solution for i =1, 2, ..., k—1. B

Example 4
Solve y® 4y — ¢/ —y =0.
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Solution The characteristic equation is

_a—-1=

o+«
Solving for a gives
(a—1)(a+1)3*?+1)=0
a=1-1,41i,

where —1 has multiplicity 2. Therefore, the general solution is

y=cire® + coe” " + cgxe T + ey sinx + ¢ cos x.

Cauchy-Euler Equations

3.4

= Definition 3.4.1: Cauchy-Euler Equation

Linear differential equations of the form

anz™y"™ + ap_12" Ty 4o gy + agry =0,

where a,, an_1, ..., ag are constants, are called Cauchy-Euler equations.

For each term, the order of y and the degree of x should be the same. Also for
this section, we first consider the 2nd-order case, where the equation is

az?y” + bxy' +cy = 0.

2nd-Order Equations

Since the equation is linear and 2nd-order, there are two linearly independent
solutions. We claim that the solutions are of the form z®, in general. Substituting
% gives

(aa(a = 1) 4 ba + c)z® =0,

which gives aa(a — 1) + ba + ¢ = 0 or aa® + (—a + b)a + ¢ = 0. This is the
characteristic equation.

Case 1: Distinct Real Roots
When the quadratic equation has two distinct real roots o and S, then the so-
lution to the differential equation is #* and z”. These two solutions are linearly
independent because one cannot be a constant multiple of another. Therefore, the
general solution is
y=crx® + cox?.
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Case 2: Repeated Real Roots
When the quadratic equation has repeated real roots «, then we know one solution,
but we need one more. To get a second solution, we use the reduction of order
method. Recall the reduction of order formula

efff(w) dz
Y2 = yl/igd‘ra
Y1

where y; is a known solution. Here, f(x) = bx/ax?® = b/ax, and (b — a)/a = —2«a
by Vieta’s formula. Substituting z® to the formula gives

e~ [f(z)dx
Y2 =Y / 5 dz
Y1

N e~ [ (b/az) dx
z xr20
N e—bln z/a
=z / ——Oaa dx

1
:v“/fdx
T

=z%nz.

which is the second solution that is linear independent of the first. Therefore, the
general solution is
y=c1x%+ cox®Inzx.

Case 3: Complex Conjugate Roots
If the quadratic equation has complex roots a + ib, then its conjugate a — ib is also
a root. Therefore, two solutions are %% and x To solve the problem for
complex exponential, we change the expression to

afib.
anrib — l,a . .Z’ib
— 2% (elnx)ib
— 0. eiblna:
= z%(cosblnz +isinblnz) and
297% = 2%(cosblnz — isinblnx)
Therefore,
y1 = z%(cosblnz +isinblnx) and

yo = 2%(cosblnx —isinblnx).
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Since the equation is homogeneous, any linear combination of y; and y- is also a
solution. Therefore,

Y1 = —(y1 +y2) = 2% cosblnx and

‘H | —

Yo = —(y1 —92) = 2%sinblnz

[\

i
are two solutions to the equation. By theorem 3.1.3, these two solutions are linearly
independent because

W (xz® cosblnz,z® sinbln z)(x)

_ z%cosblnz z%sinblnx
T |—bx®sinblnx 4+ az® lcosblnx br®cosblnz + ax® sinblnx

= bx?*(sin? bInz + cos? bln x)
= ba®® # 0.
Therefore, the general solution is
y=c1Y1 +coYs
=ciz®cosblnx + cox®sinblnx
=2%cicosblnz + cysinblnx).

Example 1
Find the general solution to the equation z2y” + xy’ — 4y = 0.

Solution The characteristic equation for 2%y” + 2y —4dy =0is ala— 1) +a—4 =
a? —4 =0, and therefore a = £2. Thus, the general solution is

Y= clx2 + CQ.’L'_Q.
‘ Example 2

Find the general solution to the equation z2y" — 2y’ +y = 0.

Solution The characteristic equation for 22y” — 2y’ +y=0is ala —1) —a+1 =
a? —2a+1 =0, and therefore a = 1 of multiplicity 2. Thus, the general solution
is

Yy =c1x+ corlnzx.

Example 3
Find the general solution to the equation z2y" + v’ + 4y = 0.
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Solution The characteristic equation for 2%y” + 2y —4y =0is ala— 1)+ a+4 =
a? 4+ 4 = 0, and therefore a = £2i. Thus, the general solution is

y=cicos2lnx + cosin2lnzx.

Higher Order Equations

For higher order equations of the form
"y + a2y 4 aray’ + agy = 0,
the characteristic equation is
apafa—1)---(a=n+1)+---+aja+ag =0.

By Fundamental Theorem of Algebra, one can get n values of «, and thus n
linear independent solutions. If a root @ has multiplicity k, then the k linear
independent solutions are

, 2 Inz, 2% (Inx)?, ..., 2% (Inz)*~L,

y=x

— Theorem 3.4.1: Characteristic Equation with Multiplicity %

If a characteristic equation of a Cauchy-Euler equation has a root oy with
multiplicity k, then the k linear independent solutions to the differential
equation are

y=2%, % Inz, 2 (Inz)?, ..., 22 (Inz)*L.

The proof is omitted, but one can prove by substituting z = e’ which changes
the Cauchy-Euler equation to a homogeneous linear equation with constant coef-
ficients.

Example 4

"

Solve 23y"" — zy’ — 3y = 0.
Solution The characteristic equation is
ala—1)(a—2)—a—-3=a*>-3a*+a—3
=(a—=3)(a*+1)=0.

Solving for « gives av = 3, £i. Therefore, the general solution is

Yy = 123 + cocoslnz + ez sinln z.
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Undetermined Coefficients

35

Recall from section 3.1 that to solve a differential equation
an(2)y'"™ + an 1 (2)y" Y + -+ ar(@)y + ao(x)y = f (=),

one should find the complementary and particular solutions to the equation, and
add them. For the last few sections, we have covered how to find complementary
solutions for some equations. This section and the next section cover how to find
particular solutions. Although the variation of parameter method is used more,
the undetermined coefficient method is also worth knowing.

Undetermined Coefficient Method
Suppose there is an equation of the form
any™ +an 1y 4+ ary +agy = f(),

where a,, an_1, ..., ag are constants. If f(x) is either a polynomial function,
exponential function, trigonometric function, or a finite sum or product of these,
we can guess the particular solution. This is best explained by an example.

Example 1
Find a particular solution of y” + 3y’ + 2y = 222 + 6z + 4.

Solution Since the right-hand side is a polynomial of degree 2, we can guess that
y is a polynomial of degree 2. Therefore, let y, = az? + bz + ¢. Then,

Y+ 3y + 2y = (ax® 4+ bx + ¢)” + 3(azx® + bx + ¢) + 2(azx® + bx + ¢)
= 2a + 3(2ax + b) + 2(az® + bz + ¢)
= 2ax? + (6a + 2b)x + 2a + 3b + 2¢ = 222 + 62 + 4.
This gives a system of linear equations
2a =2
6a + 2b =6
2a + 3b+ 2c = 4.

Solving the linear system, we get a = 1, b =0, and ¢ = 1. Therefore, y, = 2% + 1.
There may be other particular solutions. However, we only need one particular
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solution and can say that the general solution is
y=cre " +coe 2 422+ 1.

The table below shows which form of y, to try corresponding to f(x).

Guessing Particular Solutions

f(z) Yp
Polynomial of degree n (assum- || Polynomial of the same degree
ing the equation contains y)

ek:c aekx
sin kx asinkx + bsin kx
cos kx asin kx + bsin kx

If f(x) is a finite sum or product of these functions, one can try the particular
solution as the sum or product of each corresponding y,,.

Example 2
Solve y”" — 2y’ +y = 25sin 2z + (x + 6)e32.

Solution For the complementary solution, since the characteristic equation is a? —

2a+ 1 =0, a = 1 with multiplicity 2. The solution is
Yo = c1€” 4 coze”.
For the particular solution, let the particular solution to the equation
y" — 2y +y = 25sin2x
be y,, and the particular solution to the equation
y' =2y +y=(x+6)e™

be yp,. Then, y, = yp, + yp, by superposition principle. We first guess y; =
a1 sin 2x + by cos 2z. Substituting to the equation gives

v =29ty
= (a1 sin 2z + by cos 2x)" — 2(ay sin 2z + by cos 2x)" + (ay sin 2z + by cos 2)
= (—4ay sin 2x — 4by cos 2z) — 2(2ay cos 2¢ — 2by sin 2z) 4 (aq sin 2z + by cos 2x)
= (—3ay + 4b1) sin 2z + (—4a; — 3by1) cos 2z = 25sin 2z,
and a system of linear equations
—3a; + 4by =25
~day — 3b = 0.
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Therefore, a; = —3, by = 4 and y,, = —3sin2z + 4cos2z. Now, for y,,, since
(x4 6)e3® is a product of a linear function and an exponential function, we guess
Yp, = (@27 + be)e3*. Substituting to the equation gives

y' =2y 4y

((azz + b2)e®®)" — 2((asx + b2)e>) + ((asz + b2)e®)

= (9(a2m + by)e3” 4 6a263””) - 2(3(a2x + by)e3” + (1,263w) + ((agm + bg)e?""”)

(da2x + (dag + 4b2)) e,
and a system of linear equations
4as =1
4as + 4by = 6.

Solving the system, we get as = 1/4, by = 5/4 and y,, = (v/4+5/4)e3®. Therefore,
the general solution is

31‘6390 5633:

4+4

y = c1e” + coxe® — 3sin 2 + 4 cos 2z +

For most of the cases, particular solutions can be guessed by following the rule
in the table above, but there are some exceptions. We give an example.

Example 3

2z

Show that, for any real a, ae“* cannot be a particular solution to the equation

y" — 5y + 6y = 322,
Solution If we substitute ¥ = ae?® to the equation, we get
y// o 5y/ + 6y _ (ae2x)/l o 5(a62z)l + 6(ae2x)
= 4ae*® — 10ae®* + 6ae*”

=0 # 3e*".

This happens because e2* is already included in the complementary solution.

The complementary solution for the equation above is
y = c1* + e,

and ae?® = a-e*® +0- €37, so it contradicts the definition of a particular solution.

To resolve this, we try the form y, = az"e?**. The smallest n to make y, not a

complementary solution is n = 1, so we guess y, = aze®”.
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Example 4
Solve y"" — 5y’ + 6y = 3e2*.

Solution Substituting ¥y = axe®® to the equation, we get
y' — 5y’ + 6y = (axe®™)” — 5(axe®®) + 6(axe®™)
= (4axe® 4 4ae*) — 5(ae*® + 2axe*®) 4 6(axe™®)

= 5ae*® = 3

Therefore, 5a = 3, and a = 3/5. The general solution to the equation is

3
y = c1e®® + 23 + g;ve%.

To guess the particular solution, if p(z) is one of the trial particular solution
formula to the corresponding f(x) in the table above, then one should use y, =
x2™p(z), where n is the least positive integer such eliminates the duplication with
the complementary solution.

Example 5
Solve y"" + 10y’ + 25y = (3 + 4)e~°%.
Solution For the complementary solution, since the characteristic equation is a? +
10a + 25 = 0, a = —5 with multiplicity 2. The solution is
Yo = cre 0% + cowe 0T,
Since f(z) = (3z + 4)e™5%, the form of the particular solution should be (az +

b)e~>*. However, since this can be expressed by a linear combination of e~>* and

ze~, we multiply = to make y, linear independent with y.. Therefore, we use

yp = (az® + bx?)e~57. Substituting to the equation gives

y" +10y" + 25y
= ((az® + bxz)e_s‘"”)// +10((az® + bl‘2)6_5m)/ + ((az® + ba?)e™>")
= (25ax3e™"" — 30ax?e™ " + 25bx%e 57 + 6axe™ O — 20bxe” P 4 2be”57)
+10(=5az3e™* + 3az?e ™" — 5ba?e ™ 4 2bre” %) + 25(ax’e " 4 bate ")
= (6ax + 2b)e™ 7,

and therefore 6a = 3, 2b = 4. The solution to the equation is

36—5:16
+ 222757,

y = cre % 4 come 2% +
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Variation of Parameters

3.6

The variation of parameter method, already introduced in solving first-order lin-
ear equations, is another method for finding the particular solution. The variation
of parameter method is better than the undetermined coefficient method in gen-
eral because it always yields a particular solution. Before we start, we introduce
Cramer’s rule, which will help to find the particular solution.

= Theorem 3.6.1: Cramer’s Rule

Consider a linear system Ax = b with n equations and n variables, where
det A # 0, and x = (21, 22,...,2,)T. Then,

= detAl
T detA

where A; is the matrix obtained by replacing ith column by b.

Proof. Let C be the cofactor matrix of A. Then, by definition, C7 is the adjugate
matrix of A. Therefore,
A-CT =detA- I,

Since det A # 0, A is invertible, and

-1 _ 1 T
det A

The solution to the linear system Ax = b is

x=A"'b

_ (L 7
B (detAC )b’

By the definition of matrix product, we have

1 k
xXr; = 7detA ( . Aﬂbj)
Jj=1

Since A; only differs with ith column with A, the matrix obtained by deleting
7th column and jth row from A; is equal to the matrix obtained by deleting ith
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column and jth row from A. Therefore, A;; = [A;];;. We finally have

2nd-Order Case

We first consider a 2nd-order case. Consider a 2nd-order linear differential equation

v +p(x)y + q(x) = f(z).

Let the fundamental set of solutions be {y1,y2}. We set y, = ui(z)yi(z) +
uz(x)y2(x), and look for u;(z) and uz(x). Substituting to the equation gives

Yy + (@)Y, + q(@)yp = (urys + uaya)” + pluryr + ugya) + q(uryr + uzys2)
= (g + 2uyyy +uiyr + uzyy + 2u5ys + uzy2)
+ pluryy + uiyr + uays + usy2) + q(uiys + uzys2)
=wi(yy +py; +qu1) + 2uiyy +uiy
+ua(ys +pys + qye) + 2usys + usy2 + putyr + pusys

= uyy) +usyy + uiyy + uhys + ulyr + uhya + puiyr + pubys

d
= uyy) + upys + @(U’ﬂh + upy2) + p(uiyr + upy2) = f(x).

Since we need only one pair of (ui(z),us(z)), we assume, for simplicity, that

uyy1 + ubys = 0. Then, we get

d
uyyy + usys + %(ullyl + ubys) + p(uyr + ubys) = iyl + ubyh = f()

We now have two equations
yruy + youy =0

vt + yous = f(2),
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where y; and y- are known. Notice that this system can be expressed as
212
viowo] lun]  [f(2)

Since 7; and yo are linear independent, det [y} Zf] = W(y1,y2)(z) # 0, and

1 Y2
therefore the system has a unique solution. Using Cramer’s rule, we get
0
el 0/ (@)
Uy = =— and
d [y1 yz] W (y1,y2)(x)
et |7, )
Y1 Y2
yi 0 ]
det
. [yi f@] _ yf@)
’ d [yl yz] W (y1,y2) ()
et |7, ,
Y1 Y2

Integrating each formula gives u; and uq, and one can find the particular solution
to the equation.

Example 1
Solve ¢y +y = tan z.

Solution To find the complementary solution, we solve the characteristic equation
a? +1 = 0, which gives a = #i. Therefore, y; = cosz, yo = sinz, and the
complementary solution is

Y = c1COST + cosinz.
To find the particular solution, we let y, = u; cosz + uz sinx. Then,

I y2f(z)
W (y1,y2)(z)
sin x tan x
1

= —sinztanzx

sin’

CoST

1—cos?zx

COS T

= —secx + coszx
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and
r y1f(5(3)
Uy = —F——"T—
W (y1,y2)(x)
. cosrtanx
N 1
= sinx.

Integrating both expressions gives
u; = —In(tanz + secz) + sinz and us = — cos x.
Therefore, the particular solution is

Yp = (— In(tanz + secx) + sinz) cosx — cos rsinx
= —coszn(tanz + secx),

and the general solution is

Yy = 1008 + cosinx — cosx In(tan x + sec x).

Higher Order Equations

The variation of parameter method can also be used in equations with higher order.
Consider a linear differential equation

an ()Y ™ + ano1 (2)y " 4+ ar(2)y + ao(z)y = f(x)

where the fundamental set of solutions is {y1,¥y2,...,yn}. We let y, = u1yn +
UgY2 + -+ + UpYy, and solve the linear system

Y1 Y2 e Yn u} 0
vy Yy Yy, g 0
gyl L, f(z)

to get uj, uh, ..., ul,. Integrating each of these will yield a particular solution.
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Nonlinear Equations
3.7

Nonlinear equations, in general, are harder than linear equations. First, they don’t
satisfy the superposition principle. For instance, consider a nonlinear equation
(y")? — y* = 0. Solving this gives

x x

and y = e~ " are two solutions to the equation. However,
is not a solution to the equation above because

Therefore, y = e
y — e.’L‘ + e—.’L‘

(y/)2 _ y2 _ (ex _ e—m)Q _ (e.’L‘ 4 6—35)2
=—4#0.

Plus, the solution to nonlinear equations may not even exist, and may not be
unique if it exists. Still, some nonlinear equations can be solved by substituting
appropriate formulas.

Reduction of Order

Nonlinear equations of second-order can be reduced to first-order equations under
some conditions. Two cases where the reduction of order method will work are
when z is not included in the equation or when y is not included in the equation.

When y is not included in the equation, i.e. when the equation is of the form
flz,y',y"") = 0, then substituting v = 3y’ will reduce the equation to first-order.
Since y” = v/, the equation becomes f(x,u,u’) = 0, which is first-order.

Example 1

1
Solve y"y = et y(1)=1,49'(1) =

Solution Let v = y'. Then, 3" = v/, and the equation becomes
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which is separable. Solving for u gives

du 1
U— = ——
dx 3
1
udu:f—?’dz
T
1
/udu: —/—Sdﬂc
T
1 1
§u2 = 533_2+c1.

Since y/(1) = u(1) =1, ¢; = 0, and therefore u = 3y’ = x~!. Finally, solving for y
gives
y=Inx+ co.

The initial condition y(1) =1 gives ca = 1, and hence the solution is
y=lnz+1.

When z is not included in the equation, i.e. when the equation is of the form
fly,y',y") = 0, then substituting v = 3’ will reduce the equation to first-order
with respect to y. Since y” =/,

w_ Gu_dudy  du
_dx_dydx_ydy'

Therefore, the equation becomes f(y, u,u du/dy), which is first-order with respect
to y.

Example 2
Solve yy" + (y')? = 0.

Solution Let v = y’. Then, y” = udu/dy. Substituting these to the original
equation gives

du

2

=0
yudy+u
du

—y— =
ydy

1 1
/fdu:—/fdy
U Y

In|ul =—=Inly| +c
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and therefore )
U = Cy—
Yy

where ¢y = 4. Since u = ¢/, solving for y gives

dy _ L
dr 2y
ydy = codx

/ydyzcz/dm

— 2 _ +
CoT C3.
2y 2 3

Therefore, the solution to the equation is

y=+/chr+ch

where ¢}, = 2¢ and ¢ = 2c3.

Besides the reduction of order method, some nonlinear equations can be solved
by applying an appropriate substitution. There isn’t a specific answer to which
substitution one should make, and one should find out which substitution helps to
make the equation simpler.

Example 3
d
Solve <2 = 3z +y)? — Baty) 1.
dxr T
. du dy .
Solution Let u = x + y. Then, i 1+ e Then, the equation becomes

du 3u
Rt —

dr x
and thus,
d 3
a + “u = z3u?
de =z
which is Bernoulli’s equation. Now let v = u~!. Then, since dv = —u"2du, we get
du 3
20U IS g 3
dx + x *
dv n 3 3
——+-—v=z
dx
d 3
L P
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The integrating factor is

and hence

= fac4 —+ cm3.
1
Since v =u"! = ,
x+y
n 1
T
y —x* + cx3
and therefore the solution is
1
y=—x+
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Until now, we have covered linear differential equations with constant coefficients,
and Cauchy-Euler equations. There are other equations, where they have variable
coefficients, such as 3"’ — 2%y’ = 0. Some of these equations can not be solved
explicitly, so we use an analytic method, called the power series method. The idea
is to find a solution in terms of power series. Handling power series is much easier
than exponential or trigonometric functions because they are polynomials. This
chapter covers the power series method to solve differential equations.

The Power Series
4.1

= Definition 4.1.1: Power Series
A power series is an infinite series of the form
oo
Zan(az—c)" =ao+ai(z—c)+ay(z—c)?+---.
n=0

where a; is the coefficient of the ith term, and c is a constant.

The definition above specifically illustrates a power series centered at c. If
¢ = 0, then the power series can be expressed by

o0
E ™ = ag + a1 + asz® + -+ -

n=0

Definition 4.1.2: Convergence

A sequence {s,} converges to L if for every e > 0 there exists N such that
|sp, — L| < € for all n > N.

If we define {s,, } where s; = Z;:o an(x—c)™. Then, the power series converges
if and only if s,, converges. The interval of z which makes the series converge is
called the interval of convergence.

Definition 4.1.3: Interval of Convergence

The interval of convergence of a power series is the interval where for any
x in the interval, the series converges for x. The interval is usually denoted
by |x — ¢| < R, where R is called the radius of convergence.

This states if x is apart from c¢ by a distance smaller than R, then the series
converges. To find R, usually the ratio test is used.
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~ Theorem 4.1.1: Ratio Test

Consider a sequence {s,}. If we define

Sn+1
Sn

L= lim

n—oQ

)

oo
then the series Z Sn
n=0

e absolutely converges if L < 1,
e diverges if L > 1,

e is inconclusive if L = 1.

To determine if a power series converges or not, we define {s,} where s, =
an(z — ¢)™. Using the ratio test, we get

i [5241] = gy [P0
n—o0 Sn n—oo an(ilf — C)n
= lim nt1(2 —¢)
n—o0 A,
= |z —¢| lim Gntl| _p,
n—oo | Ay

Therefore, since L should be smaller than 1 to make the series converge, we have

Ap41
7%

|z —¢| lim <1

n—oo

which can determine the radius and the interval of convergence. If a power series
converges, then it defines a function, and we can say that

f@) =" an(z — o).
n=0

Differentiations and integrations of f(x) can be found as its derivatives and inte-
grals of the power series, by term-by-term. These functions will be the main point
of our focus in this chapter.

Example 1

is equal to the power series 1 4+ x 4+ 22 + - -- where z is in its interval of

convergence —1 < z < 1.
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Power Series Solutions

4.2

Consider a linear 2nd-order differential equation
az(2)y” + a1 (2)y’ + ao(z)y =0
which can also be written as its standard form
y' +p(@)y +q(z)y = 0.

To see if there exists a power series solution centered at ¢, we need to see if ¢ is an
ordinary point.

Definition 4.2.1: Ordinary/Singular Point

A point c is called an ordinary point if both p(z) and ¢(x) are analytic at
c. If either p(z) or ¢(z) is not analytic at ¢, then ¢ is a singular point.

We focus on polynomial coefficients since polynomials are analytic everywhere.
Therefore, p(z) and q(x) are analytic everywhere except the points where az(x) =
0.

= Theorem 4.2.1: Existence of a Power Series Solution

If ¢ is an ordinary point, then there exist two linear independent power series
solutions of the form

y:Zan(x_c)"=a0+a1($—0)+a2(m—0)2+....

n=0

which converges on some interval not containing any singular points.

The proof is omitted since it requires complex analysis.

Undetermined Series Coefficient Method

The method for finding a power series solution is similar to the undetermined
coefficient method, used in section 3.5. The method is this: substitute Y~ ; ap,z™
to the equation and make a recurrence relation with a,,. This is best explained by
an example.
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Example 1
Solve y"" + 23y = 0.

Solution Since 0 is an ordinary point, there exists a power series solution centered
at 0

oo
y= g anx™ = ag + a1 + asz® + -
n=0

We substitute this expression to the equation. Since

y/l = Z n(n - 1)(1711-7172 — 2a2 + 6(13.% + 12(141’2 NN

n=2
o0 o0
Y+ 2ty = Z n(n — Dapaz™ 2 4 2* ( Z anx">
n=2 n=0

= (2az + 6azz + 12a42 + - -+ ) + 23(ap + a12 + agz® + - --)

= 2a5 + 6azz + 12a42> + Z (an +(n+5)(n+ 4)an+5)x”+3

n=0
= O’
the coefficients of x* for ¢ = 1, 2, ... should be zero. Therefore, we get as = a3 =
a4 = 0, and a recurrence relation
QA
a =——————forn>0.
T T i+ 5)(n+ 4) =

Since as =az =a4 =0, a; = 0if i = 2,3,4 mod 5. The solution is

ao

ag s ai -
4-5-9-10

y=ao+azr— ——2° — —af+

a1 1
1.5° " 5.6

10
t5.6.10 11"

Here, ap and a; are coefficients. The equation is linear and 2nd-order, so there
exists two linear independent solutions y;(x) and y2(z). To make the form y =
apy1(z) + a1y2(x), we group each terms by ag and aq, which gives

1 10 1

S S S S [ 15 and
() 150 T1590.10° 159.10.14.15° T
_ Lﬁ ;11 1 16

w@) =2 - et e et 5610 1015 16°
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Example 2
Solve (1 + z)y" —zy’ —y =0.

Solution The equation has singular points at x = —1, and this gives R = 1. Since
0 is an ordinary point, there exists a power series solution centered at 0

o0
y:Zanx":ao+a1z+a2z2+~~

which converges at least for —1 < x < 1. We substitute this expression to the
equation. Since

y' = Z n(n — 1)a,z""? = 2as + 6asz + 12a42% + - - - and
n=2

o0
y = g nanz™ ! = a1 + 2a0x + 3agz® + - -,
n=1

(1+2)y" —2y —y=(1+2) ( > n(n— 1)%96"_2) - x(Z ”anxn_l> = _ana"
n=2 n=1 n=0

= (1+2)(2az + 6azz + 12a42% + - -+ ) — 2(a1 + 2a92 + 3azx® + - )
— (ap + a1z + agz® + -+ )

= 2a9 —ag + Z ((n +1)(n+2)ani2 +n(n+1)apys — (n+ 1)an)x"

n=1

=0,

the coefficients of 2% for i = 1, 2, ... should be zero. Therefore, we get 2a; —ag = 0,
and a recurrence relation

(n+1)(n+2)ant2 +n(n+ 1)aps1 — (n+ 1)a, =0,
and (n + 2)ant2 + napy1 —a, =0 for n > 1.

Compared to the example before, since the recurrence relation contains three
terms, it is harder to find the general formula for a;. For this case, we divide
into two cases, one assuming a; = 0, and one assuming ag = 0.

Case 1: ifag=01If ap =0, az = 0. We get

- 1
03a3+a2—a1:07soa3:m:_7a1
3 3
—6as + 3ag 1
e 4day + 2a3 — az , SO Qy4 T 6a1
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—3a4 + as 1

® Sas + 3a4 — a3 =0, SOCLE’:f:*éal
Case 2: if a; =0 If ¢y = 0, we get
- 1
e 3as +ax —a; =0, soagzmz_fa2
3 3
—2a3 + as 5
4 2a3 —as =0 — 2t 2
e day + 2az —ag , SO a4 1 12(12
—3a4 + as 19
® bas + 3aq — ag , SO ap 3 60a2
Therefore, we have two solutions
1 1 1
Y1 (z) :x—§x3+6$4— 6m5+~-~ and

1 1 5 19
yo(z) =14 -2? — =2 + —2* — —2°

2 3 12 6" T

The general solution is

Yy = a1y1 + aoy2

1, 1., 1. 1, 1, 5, 19 4
=a|lx—z2”+ 2" — -2+ ag| 1+ -2 — -2+ —a" — —2° +--- |.
1(3+6 6" a1ty 37 T 12 6" T
We now know how to solve equations with polynomial coefficients, but not
all linear differential equations have polynomial coefficients. Still, equations with
nonpolynomial coefficients can be solved by using the Taylor series to change into

polynomial coefficients.

— Definition 4.2.2: Taylor Series

The Taylor series of a function f(z) at ¢ is

f"(¢)

— [ (0) n
f@) =Y == = )+ (@)@ =) + @ = -
n=0
If this polynomial exists, then it equals to f(x) near c.
For example, Taylor series of sinx, cosz, and e® at 0 are
= 1 1
o 2n+1 - BT O S Y ¢
smx—z(2n+1)| =z 3'ZE +5'x 7'$ + ,
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Example 3
Solve ¢y — e*y = 0.

Solution We will change e¢* to a polynomial by using the Taylor series. Since the
Taylor series of e exists at 0, 0 is an ordinary point. Therefore, there exists a
power series solution centered at 0

y:Zanx":ao+a1z+a2z2+~~

to the equation

Substituting the power series solution into the equation gives

1
(1+m+2|x +§x + - >

- 1
:Zn(n—l)anx <1+x+2'x Jr—:r +- >Zan
n=2

1 1
= (2a3 + 6azz + 12a42% +---) — ( —l—x—!—gm —|—§x +- >(ao—|—a1x—|—a2x2+---

1
= (2a3 — ap) + (6az — a1 — ap)x + <12a4 —ag —ay — 2ao) z?

1 1
+ (20a5—a3—a2—2a1—6a0>x3—|—~~

=0.
Comparing the coefficients, we get
2@2 — ag = 0,

6(137(1170,020,

12a4 — as — a1 — §a0 =0,

1 1
5a1 — zao =0,

20&5—@3—&2—2 6

and so on. We now divide into two cases, either ag = 0 or a;=0.
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Case 1: ifag=01If ayp =0, ap = 0. We get

a1—|—a0 1

° 6a37a17a0:0,s0a3:T:6a1

° 12a4—a2—a1—}aozo,soaz;:m:ial
2 24 12

° 20a5—a3—a2—}al—laO:O,SO%:6a3+6a2+3a1+a0
2 6 120

Case 2: if a; =0 1If a; =0, we get
1
e 2as —ag =0, soagziao

a1 + ag 1
= —a
6 6 °

e Gag —a; —ag =0, so ag =

2as + 2a1 + ag 1

o 12&4—@—&1—5&0 =0, so a4 _—T_— an
e 20 a a 1a la =0 soaf6613 Gaz + 3, 4 _
e — (e — (o — ~a1 — ~an — _ _
5 3 27 50— a0 ) 5 120

Therefore, we have two solutions

1 1 1
yl(x):$+6953+ﬁx4+%x5+~- and

1 1 1 1
TR SR BTN I SRR - ST
yo(z) tgrt e t % Tyt

The general solution is

Y = a1y1 + apy2

1 1 1 1 1 1 1
:al(x+;v3+w4+x5+~-->+a2(1+x2+w3+x4+:lc5+~--

6 12 30 2 6 12

24

71
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The Frobenius Method
4.3

The previous section covered power series solutions centered at ordinary points.
But what about singular points? There still is a method of finding the power series
solution, under some conditions.

™ Definition 4.3.1: Reqular Singular Point
Consider a linear 2nd-order differential equation
y' +p(@)y +aq(z)y =0,

where ¢ is a singular point. Then, ¢ is a regular singular point if (z—c)p(x)
and (z — ¢)?q(x) are both analytic at c.

We also call ¢ irregular if either (x — ¢)p(z) or (x — ¢)%q(z) is not analytic at

c. For example, for any Cauchy-Euler equations of 2nd-order, x = 0 is a regular
singular point. The Frobenius method tells that if ¢ is a regular singular point
of a linear 2nd-order differential equation, then one can find a power series solution
centered at c.

= Theorem 4.3.1: Frobenius Method

If x = c is a regular singular point of a linear 2nd-order differential equation
y" +p(@)y +q(z)y =0,

then there exists at least one power series solution centered at ¢, which is
(o)
y=(x— c)TZan(x —o)"
n=0

=ag(z—c)" +ai(z—c)" T fag(x—c)"TE -

where r is a constant.

Here, r is a constant to be determined. The method is as follows:

1. Expand p(z) and ¢(z) to its power series.

2. Substitute y = (x — ¢)" Z an(z —c)™.

n=0

3. Compare the constant term, which gives the indicial equation.

4. Compare the coefficients for each term and find the solution.
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Let p'(z) = (z — ¢)p(x) and ¢'(z) = (z — ¢)?q(z). Then, p'(x) and ¢'(z) are
analytic at c¢. Multiplying the original equation by (x — ¢)? gives

(z =)’y + (z — o) () + ¢ (x) = 0.
Let p'(7) = po+p1(x—c)+p2(z—c)?+--- and ¢'(z) = qo+q1(z—c)+qa(z—c)?+- - -
Then, the equation becomes

/

(z—c)*y" + (x—c)(po+pr(x—c) +p2(z— )+ )y
+ (CIO+Q1(x)+q2(x—c)2+--.)y:0_

Since

o0

y" = Z(n +r)(n+7r—1)a,(z — )" "2 and
n=0

o0

y = Z(n +7)an(z —c)" T

n=0

substituting gives

(=)%Y + (@ —c)(po+pi(x—c) +pa(z — )+ )y

+ (90 + ¢1(2) + q2( —¢)? + )y

=(z— C)z Z(n +r)(n+r—1Day(z— C)”J“”*?

n=0

+ (& —c)(po+pi(z—c) +p2(x —c)* +--+) (Z(n +7)an(z — c)"+7'—1>

n=0
+ (a0 +@1(2) + @@ — ) + <Zanx_cn+r>

=(r(r—1)+por+q)(z—c)" +---=0.

Therefore, the left-hand side should be zero, and the coefficients of each power of
(x—c)", (x— )", (z — ¢)"2, ..., should be zero. Comparing the coefficients of
these powers of  — ¢ will give you the coeflicients of the series solution aq, as, .. ..
For the constant term, the equation

r(r—1)+por+q =0

is called the indicial equation, which gives r since py and gg are known. Solving
the equation, this is now divided into four cases, depending on two roots of 7.
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Case 1: Distinct Roots not Differing by an Integer
Note that this also includes complex conjugate roots. When the quadratic equation
has two distinct real roots 1 and ry not differing by an integer, we have two linear
independent solutions

—:E”Zan = a0+a1x+a2x +---) and

—x”be L(bg + by + box® 4 - --).

Case 2: Distinct Roots Differing by an Integer
If the two roots satisfy r; — ro = n where n is a positive integer, the two linear
independent solutions are

—xrlzan = 2" (ag + a1 + agx® +---) and

y2(x) = cy1 () Inw + 2™ Z bz
n=0

=cx™ (ag + ar1x + agx® + - )Inz + 272 (bg + by + bpx® +--+)

where ¢ is a constant that could be zero.
Case 3: Repeated Real Roots
If two roots are equal, then the two linear independent solutions are

—mrlzan = 2" (ag + a1x + azx® +---) and

y2(z) = y1(z) Inz + 2™ Z bpa"

n=0

= 2" (ag + a17 + asx® + - ) Inx + 272 (b + byx + box® +---).

Note that one always can find one solution by substituting y1 (z) = "™ >~ an,z”
into the equation, but in cases 2 and 3, the Frobenius method may fail to find a
second solution. If one cannot find a series > - b,z™, then the method fails to
find a second solution. Still, for some cases, one can try using the reduction order
method from section 3.2 to find the second solution. We do not consider the case
when the indicial equation has complex conjugate roots.

Example 1
Solve 2z(z — 1)y" — (z+ 1)y’ +y = 0.
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Solution The standard form of the equation is

I z+1 , 1

v 2x(w—1)y + 2z(x — 1) =0

Since x = 0 is a regular singular point of the equation, we try a solution of the
form

o0
y(z) =" Z anz™.
n=0

We have p(z) = —(z 4+ 1)/2z(x — 1) and ¢(x) = 1/2z(z — 1), so p'(z) = —(x +
1)/2(x —1) and ¢/(x) = z/2(x — 1). The Taylor series expansion of p(z) and ¢'(x)
at 0 are

which gives pp = 1/2 and ¢ = 0. Therefore, the indicial equation is
1
7"(7"—1)+§7"=0,

which gives two roots 71 = 1/2 and ro = 0. These two roots do not differ by an
integer. For r; = 1/2, substituting y;(z) = xl/? oo anx™ gives a1 = as = ag =

--- =0, and hence
yi(z) = V.

For ro = 0, substituting y; (z) = > -

neobnx™ gives bg = by =land by = b3 = --- =
0, we have

yo(z) = + 1.

Therefore, the general solution is
y(z) = cry1(z) + caya(x) = c1v/x + co(w + 1).

Example 2
Solve zy" +y = 0.

Solution The standard form of the equation is
y'+2 =0,
x
which = 0 is a regular singular point. Since p’(z) = 0 and ¢'(z) = x, we have

po = qo = 0, and hence the indicial equation is r(r — 1) = 0. We have two roots
n

r = 0,1 that differ by an integer. For r = 1, substituting y1(z) = 2>, , anz”,
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we get

For the second solution, we look for a solution of the form

ya2(x) = eyr (z lnx—l—be

Substituting ya(z) to the equation and comparing coefficients, we get

2 LL‘S

yo) = —yi(@) e + 1 4o+ = 5+

Therefore, the general solution is

y(r) = cry1(w) + coya(w)

Lo Loy 1o\, ( Lo Loy 14
=ci|x—za? + —a2% - —2t ol (z—z2°+ —2° — —=2
! 2 27 T 1u 2 2 12 144

.132 .133
1 T2 4.
b+ -+ )

Bessel's Equations

4.4

— Definition 4.4.1: Bessel's Equation
A 2nd-order linear differential equation of the form

2y’ +ay + (2% =0y =0

where v is a constant is called Bessel’s equation.

Since z = 0 is a regular singular point to the equation, we try a solution of the

form
o0
= E a,z"t"
n=0

Substituting this into the equation, we have

2y +ay + (® =07y

-)lnx

oo o0 o0
g n+r)(n+r—1a2™" + E n+r)a,x" " + g a2 — 2 g anx™ "
n=0 n=0

n=0
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Then, the indicial equation is
r(r—1)+r—v? =r>—v? =0,

and r = +v. Without loss of generality, let v > 0. We have an equation about a;
and a recursion formula
(r+Dray + (r 4+ 1)a; —v?a; =0

2

(n+r)(n+r—1a,+ (n+r)ay, + an—a —via, =0forn=2,3,....

For r = v, the equation and the recursion formula becomes
(2v+1)a; =0
n(n + 2v)a, + ap—o = 0.

We get a; = 0, and thus a,, = 0 for odd n. So, we consider the recursion formula
for only even n and get

1

———— a9y _o | =1,2,....
4n(n+v)a2n 2 Iorn y 4y

a2p = —

Solving the recursion formula, we have

_ (=n"
22l(1+0)(2+v) -+ (n+ )

a2n ag form=1,2,....

After this, we use the gamma function.

— Definition 4.4.2: Gamma Function

For any real number r, the gamma function is defined by

T(r+1)= / t'e " dt for r > —1.
0

The gamma function is the extension of the factorial to real numbers. The gamma
function satisfies the following properties:

o I'(r+1)=rI'(r)
e I'(n+1)=n!forneN.

Since ag could be any number, we let

T 2T(1+0)
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Substituting ag in the recursion formula gives

ao

—
A2n

(
22mpl(1+0)(24v) - (n+0)
(—1)" 1
22npl(140)(24v) - (n+v) . 2°T'(1 + v)
()"

= f =1,2,....
22ntvpll(1 +n + v) orn=hs

The series solution to the equation is called Bessel’s function.

= Definition 4.4.3: Bessel's Function of the First Kind

The series solution to the Bessel’s equation is called the Bessel’s function
of the first kind and denoted by

J (I) — i (_1)77, x2n
v = 2tnll(1+n+v)

by the same matter, we obtain

Ly (=1"
J_y(x) =2 Z 22n=vnIl(1 +n — v) v

n=0

2n

The functions at least converge on the interval (0, 00).

Linear Independence when v is not an integer

One question may come out: are J,(z) and J_,(x) linear independent? For some
cases, the answer is yes. If v is not an integer, then the two solutions are linear
independent. Before we state the proof directly, we start with some lemmas that
help the proof.

Lemma

1
(3) -
Proof. We have

r(1> :/ t=1/2e=t gt
2 0

Using the substitution ¢ = u?, we get

1 g,
F()z?/ e " du.
2 0
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Squaring both sides gives
1\2 o , 2
F<> = <2/ e v du>
2 0
o0 2 o0 2
= <2/ e v du> <2/ e " dv)
0 0
oo oo 5 5
= 4/ / e W) du du.
o Jo

Using polar coordinates with u = r cos§ and v = rsin 6, we finally get

1 2 %) 00
F() :4/ / e~ W) gy du
2 o Jo
/2 poo )
:4/ / e " rdrdf
0 0
2

= 27r/ e " rdr
0

= T.

Taking the square root of both sides gives
1

Lemma

2 2
Jija(x) = \/Esinam and J_; (z) = \/Ecosx.

Proof. Substituting v = 1/2 into the formula of J,(z) gives

e (=" o
Jyja(w) =z Z 22n+1/2n\T(n + 3/2)33

n=0

— \/5502 (_1)77. m2n+1
2n+1 '
x = 22 nll(n + 3/2)
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The denominator in the fraction can be written as
22T (n 4+ 3/2) = 22"l (n +1/2)(n — 1/2) --- (1/2)T(1/2)
=(2n+1)T(1/2)
= (2n+ 1)/

Therefore,

2 — ~1)" .

Hiate) =2 2 T v
_ 2 = (_1)n 2n+1
- \/E;(znﬂ)!x "

2 .
=4/ —sinz.
T

Substituting v = —1/2 into the formula of J,(z) gives

N (=" 2n
Jo1pp(x) == / Z 22n-1/2p|0(n + 1/2)x

n=0

The denominator in the fraction can be written as
22" (n 4+ 1/2) = 2*"n! - (n — 1/2)(n — 3/2) --- (1/2)T(1/2)
= (2n)!IT'(1/2)
= (2n)\/T.

Therefore,
ROV ER S G e

2 (=) 4,

- \/;nz_% @) "

/2
=4/ —cosz. [ |
T
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Theorem 4.4.1: Linear Independence when v is not an integer

Let J,(x) and J_,(z) be the Bessel functions with order v and —wv, respec-
tively. If v > 0 is not an integer, then J,(x) and J_,(x) are linear indepen-
dent.

Proof. We divide cases into where v — (—v) = 2v is not an integer or an integer.
If 2v is not an integer, then by case 1 of the Frobenius method, J,(x) and J_,(x)
are linear independent. If 2v is an integer, there are two cases: v being an integer
or a half-odd integer. We prove that J,(z) and J_,(z) are linear independent if v
is a half-odd integer. If v = 1/2, then the two solutions are

2 2
Jija(x) = Uﬁsinx, and J_j/5(7) = 14/ — cosT.

Since sinx and cosx are linear independent, we have that J;5(z) and J_4/2(x)
are linear independent. For other half-odd integers, one can see that J,(z) and
J_,(z) are linearly independent because the first terms of each function are finite
nonzero multiples of z¥ and z~". |

Therefore, we can conclude that the general solution to the Bessel’s equation
when v is not an integer is

y(x) = erJy(x) + caJ ().

Bessel's Equation when v =0
When v = 0, Bessel’s equation becomes

zzy” + xy’ + zzy =0.

We have one solution Jy(z), but since v = —v = 0, we only have one. We need
to find a second solution. By the Frobenius method, we know that the second
solution will be of the form

ya2(z) = Jo(x) Inz + Z bpx™
n=1

since the root of the indicial equation is ro = 0. The derivatives are

Jo(:l?) > _
/ —_7 1 n n—1
yo(z) = Ji(x) Inx + - + E nb,x

Jo(x) _ Jo(x)

1 :JII 1 2
W) = Ty @) a4+ 2200 - 20
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Substituting the derivatives to the equation gives

Ji
2’y + ayh + 2%yo = 2 (J§(z) Inz 0; +nE 1 n(n — 1)b,z""?)
/ J( n—1
z(Jo(z) Inz + —= + g nbp,z" ') +2* (Jo(z) Inz + E bpz™

n=1

= (2®J (2) + aJ{(x) + 2% Jo(2)) Inz + 22T () — Jo(z) + Jo(z)

oo

+ Z n(n — 1)b,z" + i nb,x" + i b2
n=1 n=1

o0 o0 o0
= 2zJ)(z) + Z n(n — 1)b,z"™ + Z nbpx™ + Z b t? =
n=1 n=1 n=1

and therefore

2J4(x) + Z n(n — Db,a™ ! + Z nbpx™ ! 4 Z bt =
n=1 n=1 n=1

Since
- (71)”‘ 2n
B = 2 ™
n=0
we have
- (_1)77, 2n—1
Tolw) = Z 22n—1pl(n — 1)!33 '
n=1
This gives

S (_l)n 2n—1 2 n—1
ZW —|—Zn bnl‘ +an$

n=1

Since the term z° only occurs in the second term with coefficient by, by = 0.
Comparing the coefficients of even powers 22*. we get a recursion formula

(2/€ + 1)2b2k+1 + bap_1 = 0.

Hence b,, = 0 for all odd n. Now comparing the coefficients of odd powers z2++1,

we get
—14+4by; =0

(71)k+1

m + (21{3 + 2)262k+2 + b2k =0
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and therefore

1 3 11
= J 1 -2 2 4 = .6 _
ya () o(x) nx—|—4x 1283: + 13824$

Finally, the general solution to the Bessel’s equation of order zero is

y(x) = c1y1(x) + caya(w)

1 3 11
_ 1 -2 2 4 o 6. )
clJO(z)+02<J0(x) nz+ 2% T 128% + 13894°

Bessel's Function of the Second Kind

When v is an integer, we get that J,(z) and J_,(x) are linear dependent because
J_p(z) = (=1)"J,(2).

Lemma
J_m(x) = (=1)™Jn(z) for a positive integer m.
Proof. We have

_ —-m - (71)71 2n
Jom(@) =2 Z_‘; 22n=mpID(1 4+ n —m) v

n

= Z x
= 22n=mnl(n — m)!

2n—m

— i (_1)n x2n7m
= 22n=mpl(n —m)!

since I'(r) is infinite when r < —1, and therefore the value of the terms becomes 0
when n < m. With the substitution n = m + k, we get

o0 o0
3 (=D" 2nmm =3 (=1m*E L2htm

22n=mnl(n —m)! 22k+mEl(m + k)!

n=m k=0
— m c- (_1)k 2k+m
== ’;22k+mk!(m+k)!x
= (=1)"Jm(z).

Therefore, we have the result J_,,,(z) = (—1)"J,,(z) for a positive integer m. W

To find a second series solution when v is an integer, we define a new function,
called the Bessel’s function of the second kind.
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= Definition 4.4.4: Bessel's Function of the Second Kind

If v is not an integer, the function Y, (z) defined by

Jyp(z) cosvm — J_,(x)

sin v

Y, (z) =

is called the Bessel’s function of the second kind. We also define

Y, (z) = lim Y, (z),

v—n

by L’Hoépital’s rule, where n is an integer.

Then, it can be proved that Y, (z) is another solution to Bessel’s equation that is
linear independent to J,(x). We therefore conclude that the general solution to
the Bessel’s equation is

y(x) = erJy(x) + Yy ().

Legendre’s Equations
4.5

— Definition 4.5.1: Legendre’s Equation

A 2nd-order linear differential equation of the form
(1 —2%)y" =22y +n(n+1)y=0

where n is a constant is called Legendre’s equation.

Since z = 0 is not a singular point to the equation, we try a solution of the

form
o0
y= Z apx®.
k=0
Substituting the series into the equation gives

(1—a?)y" =22y + n(n+ 1)y
(1—2?) Zk — Dagz*~ —Qszakxk71+n(n+l)Zakxk
k=2 k=1 k=0
= (n(n+1)ag + 2a2) + ((n — 1)(n + 2)ay + 6ag)x

+) (i +1)(i +2)air2 + (n — i) (n+1i+ 1)a;)z" = 0.

s

@
I|
o
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We then obtain a recursion formula
n(n—+1)
2
(n—1)(n+2)
A A NS
6

(n—i)(n+i+ 1)a-

(i+1)@GE+2)

a9 = — ap

az = —

Qiy2 = —
Therefore, the general solution is

y(x) = aoyr(z) + ar1y2(z)

where
) =1— n(n2—'l— 1)302 n (n— 2)n(n4—!i- 1)(n+ 3) . and
(o) = 7 — (n—lé(!n+2)x3+ (n—S)(n—1)5(!n+2)(n+4)m5_“_.

The Solution when n=0and n =1

Notice that we have y1(z) = 1 when n = 0. Also, y2(x) becomes
1 1
ya(z) :x+§x3+5x5+~-.

With the Taylor series expansion

1 1
1n(1+x)=x—§x2+§x3—~-~,

We get y2(2) = (In(1+z) — In(1 — z)) /2 because

;(ln(l—&—x)—ln(l—x)):1(<x—1x2+1x3—--~>—<—x—1x2—1x —

2 2 3

1 1
=z+ gxg + 5x5 = yo(x).

Therefore, the general solution to the Legendre’s equation when n =0 is

1+
y(@) = a0 +aj In 7,

where af = a1/2.

85
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When n = 1, we have ys(z) = z, and

1 1 1 1
yl(a:):1—x2—§x4—gm6:1—§xln1ti.

The general solution to the Legendre’s equation when n =1 is

1+

1
y(z) = ag <1 - ixln 1—33) +az.

Legendre Polynomials

Notice when n is an even integer, then y;(x) terminates, and when n is an odd
integer, then yo () terminates. These polynomials are called Legendre polynomials.

Definition 4.5.2: Legendre Polynomials

If n is an integer, then the n-th degree polynomial P, (x) obtained by termi-
nated yi(x) or ya(x) is called the Legendre polynomial.

The first few Legendre polynomials are:
] PQ(.T) =1

o Pi(z)=1zx

o Po(z) = %(3332 -1)
o Py(x) = %(5x3 — 31)
o Pyz) = %(35:34 — 3022 + 3)

1
o Ps(x) = §(63x5 — 702° + 151).

These polynomials satisfy the Legendre’s equation for n =0, 1, ..., 5, respec-
tively.
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Laplace Transforms
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This chapter covers Laplace transforms that are used to solve ordinary differential
equations. Laplace transform is a useful technique in solving ordinary differential
equations. We first start with the definition.

Definition of the Laplace Transform

5.1

— Definition 5.1.1: Laplace Transform

Let f be a function defined for ¢ > 0. Then the integral

2{f(1)} = / o

is said to be the Laplace transform of f provided the integral converges.

We usually use the notation
Z{f)} = F(s), Z{g(t)} = G(s), and L{y(t)} = Y (s).

Example 1
Evaluate Z{1}.

Solution

_efst e} _efsb 4 1 1
= lim - ==
S 0 b—o0 S S

Z{1} = /0 e st 1dt =

provided s > 0. If s < 0, the integral diverges.

Example 2

Evaluate £ {e%}, where a is any real number.

Solution

6( sta)t |© e(—s+a)b -1 1

L{e"} = / e St dt = = lim =

—5+a 0 b— o0 —Ss+a s—a

provided s > a. If s < a, the integral diverges.

The notation fo t)dt is usually used for limp_, fo t)dt. Also, assume
the conditions for s are satlsﬁed
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Theorem 5.1.1: Linearity of the Laplace Transform

Suppose that there exists Z{f1} and Z{f>} for s > a; and s > as. Then,
for s > maz{ai,az2},

Lieifi teafo} = aZ{fi(t)} + 2 Z{fa(t)}..

Proof.

L{cifi+eafa} = /0OO e (erfi(t) + cafa(t)) di

= /oo e St f1(t) dt + co /oo e Sty (t) dt
0

0

. Clg{fl (t)} + Cgf{fg(t)}.. [ |

Some transforms of basic functions are:
1
L1} = -
1=

n! . 1
ﬁan21,2,3..., ,,56{6‘1}:E

2{") =

k s

X{Sin kt} = m, X{COS kt} = m

Example 3
Evaluate .Z{t — t? 4 2¢e%t}.

Solution

Ll — 1+ 2eM) = Lt} — LU} +2.2{eM) = é L2 2

s2  s—4°

Existence and Uniqueness

Of course, the improper integral fooo et f(t) dt might not exist. Then, when does
the Laplace transform exist? We propose a theorem of a condition for existence.
We first define two terminologies, piecewise continuous and exponential order.

= Definition 5.1.2: Piecewise Continuous Function

A function f is piecewise continuous when the number of discontinuous
points in (—oo, 00) are finite, and the function doesn’t have a divergent limit.
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Definition 5.1.3: Exponential Order

A function f is of exponential order when there exists constants a, k > 0
and 7" > 0 such that
f(t) < ke™ when t > T.

This means that f should be eventually smaller than an exponential function.
For example, f(t) = t" is of exponential order for any natural number n, but
2
f(t) = e is not of exponential order.

Theorem 5.1.2: Sufficient Condition for the Existence of Laplace Transform

Suppose f is piecewise continuous on [0, 00) and of exponential order. Then
the Laplace transform of f exists for s > 0.

Proof. We divide [0, 00) to [0,T") and [T, 00).

00 T 0o
—st _ —st —st
/O e St f(t)dt = /O e St f(t) dt + / e St (t) dt.

T

We get that fOT e st f(t) dt is finite. Since f is of exponential order, there exists
some constants a, k > 0 and T" > 0 such that

|f(t)| < ke for t > T.

Therefore,

’/T e f (1) dt‘ g/ et F(0)] dt

T
oo
§k~/ et e dt
0

ef(sfa)T
=k.-— for s > a. |
s—a

We now know about existence, but how about uniqueness? What if there are
two different Laplace transforms for a function? That is actually not the case, and
Laplace transform is unique. However, the proof of uniqueness is beyond this level,
so we do not state it here. From now on, one can assume that Laplace transform

of a function is unique.

Theorem 5.1.3: Uniqueness of the Laplace Transform

Assume that f, g : [0,00) — R are continuous and of exponential order. If

L{f ()} = Z{g(1)}, the f(t) = g(t).
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The Inverse Laplace Transform

5.2

Definition 5.2.1: Inverse Laplace Transform

If F(s) =2{f(t)} we say that f(t) is the inverse Laplace transform of
F(s).

f(t) =27 H{F(s)}

Unlike the Laplace transform where there is a given formula, inverse transforms
don’t have a specific formula, and it only could be found by knowing Laplace
transforms of functions. This means that inverse transforms of arbitrary functions
cannot be calculated. It is specifically shown in example 1 of this section.

Inverse transforms of some functions are:

{1l
S
I
R ) R QU I ST 73 S G
sntl s—a

k . s
X{M}:Slnkt, X{M}:COS kt

Like the Laplace transform, the inverse transform is also linear.

— Theorem 5.2.1: Linearity of the Inverse Transform

The inverse Laplace transform is a linear transform. That is, for constants
c1 and cs,

LHe F(s) + cG(s)} = 1. L HEF(s)} + .2 HG(s)}).

Example 1
Evaluate ﬁ_l{;}.
Solution ) ) N )
SRCIREEREI S
Example 2

2 3
Evaluate ! S+ .
s249
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Solution
= 23—1{8219} +'$_1{523+9}
= 2cos 3t + sin 3t.
- Transforms of Derivatives and Integrals

In this section, we see some properties of Laplace transforms and how they can be
used to solve ordinary differential equations.

~ Theorem 5.3.1: Transforms of Derivatives

Assume that f’ is piecewise continuous on [0,00) and f is of exponential
order. Then,

ZL{f ()} = sF(s) = £(0).

If f,f',--, f1 are continuous on [0,00), f is of exponential order, and
f(t) is piecewise continuous on [0, 0c), then

LM ()} = s"F(s) — " f(0) = s"2f(0) — - — fTD(0).

Proof. We use induction. For n =1,

211wy - | T ety de

0

=e " f(t)

+ s/ e St f(t)dt
0 0

— —F(0) +s2{f(1)}
= sF(s) - f(0).

Assume the equation holds for n = k. So,

LUDO)) = FF(s) - 871 1(0) = 827/(0) — - — fED(0),
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Forn=k+1,
L) = [ et e
0

= e f(t)

—|—s/ e st R (1) dt
0 0

= —£90) + 521V (1)

= S(*F(s) — 5 11(0) — $527(0) — -~ 74V (0) - £9(0)
= " (s) = s"£(0) = ¥ f(0) — - — fP)(0),
which completes the induction. |

— Theorem 5.3.2: Transforms of Integrals

If f is piecewise continuous on [0,00) and of exponential order, then

z{ /Otf(T) dT} - @ and

21{}?)}_/0tf(7)dr.

Proof. Let g(t) = fot f (1) dr. We first prove that g(t) is of exponential order. Since
f is of exponential order, there exists k,a and 7 such that |f(t)| < ke®. Then,

t t t k k
|g<t>|:] [ reras] < [1rolar< [ e ar =R -1y < e

which shows that g is also of exponential order. Also, since %g(t) = f(t), and
g(0) = 0, by the Transforms of Derivatives theorem,

210} = 2{ 90} = s210}(0) - 9(0) = 52 {g(0).
Dividing by s for both sides gives us

L)} = .z{ /Otf(T) dT} _F). n

S

Example 1

Evaluate ! # .
s(s?2+1)
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Solution
1 1 1
—1 —1
= g —
{5(52+1)} {5 52+1}
¢
= / sinT dr
0
=1 — cost.
Example 2
1
-1
Evaluate (,E/p { m } .
Solution

Nawn) =< o)

t
:/ (1 — cosT)dr
0

=t — sint.

Solving Differential Equations with Laplace Transforms

Laplace transforms can be used in solving ordinary differential equations, especially
initial-value problems. The steps for solving initial-value problems are:

1. Apply the Laplace transform for both sides of the initial-value problem, which
changes y(t) to Y (s).

2. Solve the equation with respect to Y (s).

3. Apply the inverse transform to the solution of Y (s), and you get the solution
y(t) to the initial-value problem.

Example 3
Solve y' + y = 2cost, y(0) = 1.

Solution Applying Laplace transform to both sides gives you

sY(s)—y(0)+Y(s)=2-

(s+1)Y(s)—1=2-
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If you solve for Y (s), you get

1 2s

Y =

)= A DT D)
I n 1
Ts241 0 2417

If you apply the inverse transform for both sides, you finally obtain
y(t) = cost + sint

which is the solution of the equation given.

Translation Theorems
5.4

First Translation Theorem

Now you know Laplace transforms of some basic functions, but what about prod-
ucts of basic functions? For example, how would you calculate Z{e3!sint} or
Z{e 2'*}? The first translation theorem helps to find the Laplace transform
of a function multiplied by an exponential function.

— Theorem 5.4.1: First Translation Theorem
If Z{f(t)} = F(s) and a is any real number, then
L{ef(t)} = F(s — a),and
ZHF(s - a)} = e f(1).

We also use the notation F(s) for F(s — a).
s—s—a
Proof.
L0y = [ e
=F(s—a). ]
Example 1

Evaluate .Z{e?!t}.
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Solution
5! 120
$2tt5 :gt5587:7 —
{e } { } - ? 6 S—s—2 (S - 2)6
Example 2
. ~1 S

Eleuate g {82—43—"—13}

Solution

1 S 1 s+2
SR E e S s

s 2 3
_ o1 S0
{<52+9+3 52+9)

2
= e cos3t + §B2t sin 3t.

s—>s—2}

Example 3
Solve y"" — 2y’ + 1y = tet, y(0) =0, y'(0) = 4.

Solution Applying Laplace transform to both sides gives you

LYy —22{y'} + Ly} = L{te"}

s*Y (s) — sy(0) — y/(0) — 2V (s) +2y(0) + Y (s) = G-1)

If you solve for Y (s), you get

1
(s—1)?
4 1
-7 s-DF

(s =25+ 1)Y(s) =4+

Y(s) =

If you apply the inverse transform for both sides, you finally obtain
¢, 1y
y(t) = 4te’ + Et e'.

Second Translation Theorem

Differential equations we have encountered until now could also be solved by the
variation of parameter method. However, Laplace transforms are used frequently
when some functions are special: functions that are not continuous. The second
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translation theorem is used to solve differential equations involving discontinu-
ous functions.

— Definition 5.4.1: Unit Step Function

The unit step function % (t — a) is defined as

0 t<a
1 t>a.

%(t—a)z{

Another name for this function is the heaviside function. However, we will call it
as unit step function here.

When a function is multiplied by % (¢ — a), the function becomes 0 for ¢ < a,
and itself for ¢ > a. That is,

0 t<a

FOw (t - a) = {m) o

If you want to shift the function a units to the right, you can take

0 t<a
fit—a) t>a.

ft=a)%(t—a)= {
Also, general piecewise functions of the type

_Jet) t<a
f(t)_{h(t) t>a.

can be expressed as

F&) = g(t) = (g(t) = h(1)) % (t - a).

Similarly, piecewise functions of three cases

g(t) t<a
F&) =S ht) a<t<b
g(t) t>b

can be written

Ft) =g(t) + (h(t) — g(®) [% (t —a) — % (t - b)].

These expressions of unit step functions can be generalized to functions of several
cases, even more than three.



98 Chapter 5. Laplace Transforms

— Theorem 5.4.2: Second Translation Theorem
If Z{f(t)} = F(s) and a > 0, then
L{ft—a)%(t—a)} =e **F(s), and
L He ™ F(s)} = f(t —a)%(t — a).

This can also be written as
L% (t—a)} =e “L{g(t+a)}

with g(t) = f(t — a).

Proof.
f{f(ta)%(ta)}/an“f(ta)?/(ta) dt+/ooe*“f(tfa)?/(tfa) dt
:/0 OdtJr/a e ft—a)%(t—a)dt

_ /OO e~ f(t — ) (t — a) db.

Substituting v = ¢t — a gives dv = dt, and
f{f(t—a)%(t—a)}:/ e St f(t —a)% (t — a) dt
:/ e st f(v) du

=e /aoo e U f(v) dv

=e “Z{f(1)}. u

Corollary : Laplace Transform of a Unit Step Function

L{U(t—a)} = e—as,,zﬂ{l} _
S S
Example 4
Evaluate Z{cost% (t — 7)}.
Solution
Lleost (t— )} = e ™ Lcos(t +m)} = —e™ Llcost) = — e ™.

52+1e
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Example 5
Evaluate f‘l{ 1 6_68}.
s—2
Solution
_1{5 i 5¢ 65} = eQ(t_G)%(t —6).
Example 6

0 0<t<m

sint t>m.

Solve y' — 2y = f(t), y(0) = 0, where f(t) = {

Solution f(t) can be written as f(t) = sint% (t — ).
Applying Laplace transform to both sides gives you

LY -2y} = L{sintwu (t — )}

sY (s) =y(0) = 2Y (s) = 1+ e

If you solve for Y(s), you get

1
_2Y - _ —TSs
(s=2)¥ () = —e
1
(s—=2)(s24+1)
1 s+2 1 1
5 s241 5 s—2

Y(s)=—

If you apply the inverse transform for both sides, you finally obtain

y(t) = %cos(t —mU(t—m)+ % sin(t —m)% (t — ) — %ez(t_”)%(t —)

40 t<m
Lcos(t —m) + Zsin(t — ) — L2 ¢ >
The solution of a differential equation including unit step functions may not
be differentiable at some points. In this case, we differentiate piecewise, so that
the function is continuous, and each part of the function satisfies the differential
equation. For the example above, each side of the solution satisfies the differential
equation. Also, the solution is continuous because lim;_, . y(t) = 0 = y(7).
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Derivatives and Integrals of Transforms

5.5

More properties are stated to make evaluating Laplace transforms easier.

= Theorem 5.5.1: Derivatives of Transforms
If Z{f(t)} =F(s) and n=1,2,3,---, then

L2 f()} = (—1)"%F(s), and

z—l{j;} = (1) f(2).

Proof. We use induction. For n = 1, since
d d [
—F(s) = — “Sf(t) dt
SPe =5 [ e

_ / %(e—st £(£)) dt (by Leibniz Rule)
0

= /OOo —eStotf(t) dt = —L{tf(t)}, and

d
Z{tft)}) = - Z{f(O)})
Assume the equation holds for n = k. So,
dk
dsk

LD} = ()

F(s).

Forn=k+1,

k k+1
(V@) = 1 o F )

d tak
== —stik £ dt
i/, e f(t)

_ / %(e—stt’v F(£)) dt (by Leibniz Rule)
0

= /OO —e St tRf(t) dt = —L{tPTL ().

Therefore,
dk+1

LB = ()
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which completes the induction. |

The Leibniz Rule used in the proof is a theorem that interchanges the derivative
operator with the partial derivative operator inside the integral.

j( / e dt) -/ "D ety ar

— Theorem 5.5.2: Integrals of Transforms

If Z{f(t)} = F(s), then

t
= ~se /(1) dt
0 t
Ly -
Example 1
Evaluate f‘l{ In 5+3 }
s—2
Solution

. d 5+3 d
Since ds(lns—2> = £(ln(s+3) —In(s — 2))
1 1

- —— - 5 = L),
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—tf(t)z.i”‘l{ ! ! }

s+3 s—2
— e 3t o2t
2t _ ,—3t
and f(t) = ¢ te

Example 2
Solve y"" +y = te', y(0) = 0, y'(0) = 1.

Solution Apply Laplace transforms to both sides, we get

Ly} + L{y} = L{te'}

7Y () = sy(0) — y'(0) + Y (s) = _% s i 1
Solve for Y (s), then
(24 1)Y(s) =1+ (5—11)2
1 1
Y(s) = 21T (s2+1)(s—1)?

1 s 1 1 1 1

1
_§s2+1+82+1+2(s—1)2_§s—1

Finally, applying the inverse transform to both sides gives you the solution

(t) L t + si t+1tt L
= — COS S11 —te’ — —e’.
=3 2" 73

Convolution

5.6

Is the Laplace transform multiplicative? The answer is no, and Z{fg} # Z{f}-Z{g}.
Instead, an operation called convolution is developed to multiply two transforms.

= Definition 5.6.1: Convolution

If functions f and g are piecewise continuous on the interval [0, 00), then the
convolution of f and g, denoted f * g, is a function defined by

frg= / f(r)g(t - 7)dr.
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Example 1

Evaluate ¢ * sin ¢.

Solution

¢
et*t:/ e (t—T)dr
0

t
:/ (teTTe'r) dr

0
=tel —t—tel+et—1=¢' —t—1.

As written in the beginning of the text, the usage of convolution arises when
multiplying two Laplace transforms. The theorem is called the convolution the-
orem.

= Theorem 5.6.1: Convolution Theorem
If Z{f(t)} = F(s) and Z{g(t)} = G(s), then

L{f g} = Z{f (1)} L{9(t)} = F(s)G(s), and
ZLTHF()G(s)} = f *g.

Proof.

F(s) = 2{f(1)) = / T e f(r) dr and G(s) = Z{g(t)} = / T gy dn.

Then,

Feee = ([T eriman) ([T ean)

= /OO<> /OOO e T f(r)g () dr dy
= /OOO f(r)dr /OOO e T g(y) dy

If we let ¢ = 7 + 7, since dt = dr, so
o0
-

F(s)G(s) = /O "ty ar / =gt — 1) dt.
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Because f and g are piecewise continuous on [0, 00) and of exponential order,
we can change the order of integration. Therefore,

F(S)G(s):/ *Stdt/ f(r)gt—7)d
:/Oooest( 0 f(T)g(lf—T)dT) dt

=Z{f*g}. u

Corollary : Transforms of Integrals

3{/Otf(7)d¢} Fis).

Proof.
g{/otf(f)dr} {/f ar
=2Z{f(t) x 1}
=2{f(t)}- 2{1}
= F(s) é
() .
Example 2

t
Evaluate ,,Sf{ / sin 7 cos(t — 7) dT}.
0

Solution

t
f{/ COSTSiH(t—T)dT} = Z{cost xsint}
0

= ZL{cost} - L{sint}
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Example 3
_ 1
EValuate j 1 { m } .
Solution

. 1 _af 11
g {(32+k2)2 7‘7% 82+I€2 82—|—k'2

1k k
7k2$ {32+k2 32+k2}

1
— (sint * sint)

kQ

t
— [ sinkr sink(t —7) dr
k= Jo

1 (1
:ﬁ/ i(cosk(27'—t)—coskt) dr
0

S isinlc(2 —t) —Tcoskt t
T 22 2k T T .

sin kt — kt cos kt
2k3 '

Properties of Convolution
Convolution has the following properties:
e The associative property, i.e. f*(gxh)=(f*g)=*h
e The commutative property, i.e. fxg=gx* f
e The distributive property, i.e. f*(g+h)=fxg+ f*h

o fx0=0%f=0.

Integral Equations

There are not only differential equations, but also integral equations! Integral
equations are simply functional equations that contain integrals. Solving integral
equations are very similar to solving differential equations. Especially, the convo-
lution theorem is used frequently while solving integral equations. There are also
equations that contain both derivatives and integrals. Such equations are called
integrodifferential equations.



106 Chapter 5. Laplace Transforms

Example 4

t
Solve y(t) —|—/ y(r)e! ™™ = 3t%
0
Solution First, we apply the Laplace transform for both sides.

2y +2{ | t e b = 2()

L{yt)} + L{y(t) « '} = 2{3}
L)} + L{yt)} - 2{e'} = 2{3¢*}

1 6
Then, solving for Y (s) gives
s 6
5 — IY(S) s3
6s —6
vis) =2
2
T8 st T8 i

Therefore, if you apply the inverse transform, you get the solution

y(t) = 3t — 3.

The Dirac Delta Function

5.7

— Definition 5.7.1: Unit Impulse
The unit impulse function 6, (¢ — tg) is defined as

0 t<tg—a

1
da(t —to) = 5 to—a<t<tota

0 tZto—i—a

where a > 0 and tg > 0.

The unit impulse function has the following property:

/Oooéa(t—to):l.
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Definition 5.7.2: Dirac Delta Function

The Dirac delta function §(t — t) is defined by the limit

5(t - to) = lim (Sa(t - to).
a—0

The Dirac delta function has the following properties:

t=1
.(5(13_150):{;0 t;ﬁto and
05

. / 5(t —to) dt = 1.
0

o0 oo

For usual functions, / d(t—to) dt =0, but actually/ 0(t—to) dt = 1. This

0 0
is because the Dirac delta function is not actually a function—it is a distribution.
The Dirac delta function doesn’t contain any meaning itself, but it is characterized
with other functions during integration.

Theorem 5.7.1: Shifting Property of Dirac Delta Function

If f is a continuous function, then

[ =0 @t = st

Proof.
/ St~ t0) (1) dt = lim [ 6a(t — t0) (1)
0 a=0Jo
. 1 t0+a
:g%%/to_a () dt

By the mean value theorem for integrals, there exists ¢ € (ty — a, to + a) such that
to+a N
/ f@t) dt =2af(t).
to—a

Finally,

/OO 5t — to) f(t) dt — lim — /to+af(t) dt
0 to

a—0 2a

1 -
= lim %a (2af(t))

a—0 2a

= f(to)
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Since ¢ — 0 as a — 0. [ |

Theorem 5.7.2: Transform of the Dirac Delta Function
|_F0r to > 0, Z{0(t —to)} = e 5to.

There are two proofs, using the shifting property or the unit step function.
Both proofs are stated.

Proof. If we set f(t) = e~ 5, then
L —10)} = / St — to) - =" dt = et
0

Since f(tg) = e 5%, [ |

Proof. We first write the Dirac delta function as a combination of unit step func-
tions.

Sa(t —to) = 21a<%(t (to—a)) — % (t— (to+a))>.

If we apply the Laplace transform,

2a

1 efs(tofa) efs(toJra)
()

_ eds _ g—as
=e S| —— ).
2as

Since the Dirac delta function is the unit impulse when a — 0,

L{a(t —to)} = 5{1 (02/ (t = (to—a)) — % (t — (to + a>)>}

Z{o(t —to)} = lim Z{da(t —to)}

B . eds _ p—as
=e %0 lim [ —————
a—0 2as

B ) 5€%5 4 se 05
—e sto lim (

a—0

) (by L’Hopital’s Rule)
2as

— ¢ Sto, |

Corollary
Lt -0)}=1.
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Solving differential equations containing the Dirac delta function is similar with
those without the Dirac delta function. The Dirac delta function comes out when
one generates a differential equation with a function that is not differentiable at
some point. The Dirac delta function in a differential equation doesn’t contain a
meaning itself, and something comes up only when one applies the Laplace trans-
form. Since an exponential function comes out when you apply Laplace transform
of the Dirac-delta function, the solution of the differential equation containing the
Dirac-delta function contains unit-step functions.

Example 1
Solve vy +y = §(t — 7), y(0) = =2, and 3/(0) = 0.

Solution If you apply the Laplace transform for both sides, you get
s2Y (s) + 25+ Y(s) —0=e ™.
Then, solving for Y (s) gives you
(82 +1)Y(s) = 25+ e

—TSs

S (&

Y(s)=—-2.—> 4+
(s) 32+1+32+1

Using the inverse transform theorem, you get

—2cost t<2m

—2cost —sint t> .

y(t) = —2cost +sin(t —m)%(t —m) = {

Systems of Differential Equations

5.8

Laplace transform can also be applied when solving systems of differential equa-
tions, mostly linear systems. After applying the Laplace transform, one can solve
the system of algebraic equations, and then apply the inverse theorem to get the
solution of the system.

Example 1

Solve
2’ +y = cos2t

—z +1vy' =sin2t.

when z(0) =0 and y(0) = 0.
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Solution Applying Laplace transform for both equations, you obtain the system of
equations

s
X(s) — 0+ Y(s) =
SX(9) =0+ V() = 5
_X(s) + 5V (5) =0 = —>
5244
which is the same as
s
X Y(s) =
X +Y () = 5y
X(s)+ 5Y () =
— S S S) = .
s2+4

Solving the system of algebraic equations of X (s) and Y'(s) yields

s2—2 1 2
X = = —
R P Y P B Rl g Sl

Y(s) = 3s _ s s
T2 +4) 2+1 244

Therefore, the solution is
z(t) = —sint + sin 2t

y(t) = cost — cos 2t.



Chapter 6

Systems of Differential Equations
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In Section 2.3 we illustrated how to solve linear equations. Also, in Section 6.8,
some linear systems were introduced. In this chapter, we focus on solving systems
of differential equations, where there are n functions and n variables. We especially
focus on first-order linear systems.

Theory of Linear Systems

6.1

First, what even is a first-order linear system? The term first-order and linear is
the same as those that we defined earlier in Section 1.1.

— Definition 6.1.1: First-order System
A first-order system is a set of first-order differential equations

dyx

E = fl(ta Yi,Y2,. - 7yn)

dyz

E = fZ(ta Y, Y2, - 7yn)

dy

d_tn = fn(ta Yi,Y2, - - - 7yn)

— Definition 6.1.2: First-order Linear System

A first-order system is linear if it can be expressed in the form

d

% = a1 (t)y1 +ar2(t)y2 + -+ a1n(t)yn + 91(t)
dy1

ar a21(t)yr + aze(t)y2 + -+ + azn(tyn + 92(1)
dy1

dat an1 (t)y1 + an2(t)y2 + -+ + ana(H)yn + g1(2).

The system above can be expressed in matrix form

Y = AY + G,
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where
U1 ai; Q2 -+ Qln g1
Y2 ag1 Q22 -+ QG2n g2
Y=| .|, A= . . . . ,and G =
Yn an1 an2 e Ann In

Differentiation is defined entrywise.

Initial-Value Problems

An initial-value problem consists of the linear system

Y =AY + G
with an initial condition
y1(to) M1
Y(zg) = yz(.to) L -
yn('tO) Vn

In section 1.2 and 3.1, we discussed whether there exists a unique solution to
initial-value problems. There also exist a unique solution for initial-value problems
in first-order linear systems.

= Theorem 6.1.1: Existence and Uniqueness Theorem

If every entry of A and G is continuous on an interval containing xg, then
there exists a unique solution to the initial-value problem

Y =AY + G
Y (to) =Y,

on the interval.

Homogeneous Systems

The superposition principle that we have discussed in section 3.1 also holds in
linear systems. There were two kinds of superposition principles: for homogeneous
equations and nonhomogeneous equations. Similar to how we defined earlier, a
linear system is homogeneous if G = 0. That is, if every entry of G is equal to
Zero.
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— Theorem 6.1.2: Superposition Principle

Let Y1, Yo, ..., Y, be solutions to the homogeneous linear system
Y = AY.
Then, for constants cy, co, ..., Cp,
a¥Yi+ceoYo+ -+ Yy,

is a solution to the homogeneous linear system.

Proof. Since Y1, Yo, ..., Y, are solutions to the homogeneous linear system
Y =AY,
we have
Y =AY,
Y, =AY,
Y, = AY,,.

Substituting the linear combination gives
(Y1 +eYe+-+e, YY) =aY +eYs+-+ e, Y,
=AY + cAY5 + - + ¢, AY,
=A(1Y1+eYs+ -+, Y. [ ]
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First-order homogeneous linear systems with n unknowns have n linear inde-
pendent solutions.

™~ Theorem 6.1.3: Existence of Linear Independent Solutions

The n solutions

Y11 Y12 Yin

Y21 Y22 Yan
Yl - ) Y2 - . ) ) Y’I’L =

Yn1 Yn2 Ynn

of the homogeneous linear system Y’ = AY are linear independent if and
only if

Y11 Y12 - Yin

Y21 Y22 0 Yo
W(Yl,Yg,...,Yn): . . .| #0.

Ynl Yn2 T Ynn

= Definition 6.1.3: Fundamental Set of Solutions

If there are n linear independent solutions Y1, Yo, ..., Y, to the homoge-
neous first-order linear system, then the set

{YlaYQ? e aYn}

is called the fundamental set of solutions.

— Theorem 6.1.4: General Solution - Homogeneous System

If {Y:,Y5,...,Y,} is the fundamental set of solutions to the homogeneous
first-order linear system, then the general solution to the system is

Yc=c1Yi+ceYo+ -+, Yy,

where ¢y, 3, ..., ¢, are constants.

The general solution to the homogeneous system is called complementary solution.

Nonhomogeneous Systems

Recall the definition of a particular solution from section 3.1. Similarly, any solu-
tion to the first-order linear system

Y' =AY + G

is called particular solution and denoted Y.
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— Theorem 6.1.5: General Solution - Nonhomogeneous System

Let Y, be any particular solution to the nonhomogeneous first-order linear
system
Y' =AY +G.

Then, the general solution to the system is
Y=Y.+Y,
= 61Y1 + CQYQ + -4 CnYn -+ Yp,

where ¢y, 3, ..., ¢, are constants.

Conversion of a linear equation
A linear nth-order differential equation
v =an (Y -+ a (W)Y + a0ty + f(2)

can be converted into a first-order linear system

/

n 0 1 0 -~ 0 0 v 0
Yo 0 0 1 0 0 Yo 0
— : : +
Yn—1 0 0 0 1 0 Yn—1 0
Un ap ai as cr Ap—2 Ap_1 Un f(t)

n=y
2=

Ys = y”

Yn = y(nil)'

Sometimes, solving a first-order linear system will be less complicated than
solving a linear nth-order differential equation.

Example 1

Convert 3" — 4y’ + 3y = 0 into a first-order linear system.

Solution Taking the substitution y; = y, y2 = 3, the linear equation is converted
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to the system
y1 = Y2

Yy = — 3y1 + 4y2,
/
() -5 D)
Y2 =3 4/ \y

Homogeneous Linear Systems

or

in matrix form.

6.2

This section is focused on homogeneous first-order linear systems with constant
coefficients, i.e. systems of the form

Y' =AY

where the entries in A are constants. We try a solution of the form
Y = XeM.

We get Y/ = AXeM = AXeM. Since eM £ 0, we get
AX = AX,

which is the eigenvalue problem. With I the identity matrix, rearranging terms
gives

(AL — A)X = 0.

We want a nontrivial vector X, so we must have
det(A\I — A) =0.

The equation above is called the characteristic equation. In a system of n un-
knowns, the characteristic equation will be a nth-order polynomial equation with
respect to A. One can find the eigenvalue A by finding the roots of the polynomial,
and the corresponding eigenvector X.

Case 1: Distinct Real Eigenvalues
If the characteristic equation possesses n distinct roots Ay, Aa, ..., A,, then their
corresponding eigenvectors X1, X, ..., X,, are linear independent. The proof for
linear independence is stated below.
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Lemma

For a matrix A, if there exists two different eigenvalues A\ to the eigenvalue

problem
AX =AX

then the corresponding eigenvectors are linear independent.
Proof. Suppose there exists two eigenvalues A\; and Ao, and their corresponding
eigenvectors X1 and X,. If X; and X, are linear dependent, then there exists a

constant ¢ such that
Xg = CXl.

Multiplying Ao to both sides gives
A2 Xo = cAeX.
Also, multiplying A to both sides gives
AX, = cAXy
AaXo = cA1 X.

Therefore, we have
)\2X2 = C>\2X1 = C>\1)(17

which leads to ¢(A; — A\3)X; = 0. However, since ¢ # 0, A} # Aq, and X3 # 0, we
have a contradiction, and the two eigenvectors are linear independent. |

Therefore, the general solution is
Y = clxleht + CQXQe)‘Qt + -+ chne)‘"t.

Case 2: Repeated Eigenvalues
If an eigenvalue ) is repeated n times as a root. We call this algebraic multiplicity.
If there exists n linear independent eigenvectors for A, then we are done. However,
in some cases, there would be less than n linear independent eigenvectors. In these
cases, we should find new solutions to make n linear independent eigenvectors. We
use the generalized eigenvector method.

— Definition 6.2.1: Geometric Multiplicity

The geometric multiplicity of an eigenvalue is defined by the nullity of
A — A

The geometric multiplicity is the number of linear independent eigenvectors.
Therefore, if the geometric multiplicity is not equal to the algebraic multiplicity,
(note that the geometric multiplicity cannot exceed the algebraic multiplicity.) we
need to find more eigenvectors that are linear independent. With knowing that
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X, eM is a solution to the system, we try a solution of the form

Y = XjteM + XoeM.

We have
Y’ = X eM4AX teM + AXoeM and
AY = AX teM + AXpe
= X teM + AXqeM.
Therefore,
XpeM + AXpeM = AXqeM
and

X1+ X = AXo.

X should satisfy the relation
(A= AD)Xy =X;.

We call X5 the generalized eigenvector of A corresponding to A. Therefore, for X,
such that (A — A)Xy = X,

Y = Xyt + Xpe

is a solution to the linear system if the characteristic equation has repeated root
A. Then, X; and X5 are linear independent.

Lemma

If X, is the eigenvector corresponding to the eigenvalue A and X, is the
generalized eigenvector satisfying

(A= ADXy =Xy,
then X; and X, are linear independent.

Proof. Suppose X; and Xy are linear dependent. That is, there exists constants
c1 and ¢y, that are not all zero, satisfying

1 X1+ Xy =0.
Multiplying A\I — A, we get
C1 ()\I — A)X1 -+ Cg()\I — A)XQ = 010 + CQXl

= C2X1 =0.
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Since c2X; = 0 but X7 # 0, ¢ = 0. Then, ¢;X; = 0 and we also have ¢; = 0.
However, since ¢; and ¢y cannot be all zero, we have a contradiction. Therefore,
X, and Xj are linear independent. [ |

We now have obtained two linear independent solutions. We can repeat this
process and get m linear independent solutions:

Y, = X eM

Y, = X teM + Xoet

t2
Y; =X 56” + the/\t + Xgext

tm—l N tm—2
Yo = XMy Xy
Ym0 © TR )

where

X is any eigenvector of A,

X, is generalized eigenvector such that (A — \I) Xy = X4,

X, is generalized eigenvector such that (A — AI)X,,, = X,,,—_1.
Finally, the general solution contains
caaYi+ceYo+ o+ e Y.

Case 3: Complex Conjugate Eigenvalues
If the characteristic equation has complex conjugate roots « + ¢3, we have two
linear independent solutions. Denote these conjugate roots A and .

Lemma

If the characteristic equation has complex roots A and X, then
XeM and XeM
are both solutions to the homogeneous linear system
Y = AY.

Proof. Tt is evident that Xe’t is a solution. Taking complex conjugation to the
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whole system

Y' =AY,

we have
Y =AY
=AY

because A only contains real entries. Therefore,

is also a solution.

Therefore, the two solutions are
XM = X elotiB)t — x ot (cos Bt + isin ) and
XMt = Xela—iB)t _ Xe* (cos ft — isin (t).

Since these two solutions are linear independent, the linear combinations

1 I
Y, = §(Xe’\t + XeMt)
1 _ ; _
= §(X + X)e™ cos Bt — %(—X + X)e* sin Bt and
Y, = %(Xe*t — XM

- %(—X + X)e™ cos Bt + %(X + X)e™ sin Bt
are also solutions to the linear system. If we let
B; = (X + X) = ®(X) and
B = - (- X+ X) $(X),
then the two solutions to the system are

Y, = e* (B cos ft — By sin Bt) and

Y, = e*(Bycos Bt + By sin ft).

Example 1
Solve Y’ = <_1 4> Y.

121
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Solution The characteristic equation is

A+1 4

det()\I—A):‘ Sy

-

which is A2 — X\ — 30 = 0. Solving for A\, we have two distinct eigenvalues \; = 6
and Ao = —5. To find the corresponding eigenvectors, we solve the linear system

(AL — A)X = 0.

For A\; = 6, we have

and hence
4
x- (1),
For Ay = —5, we have
4 4
(M -A)X, = (7 7) X, =0,
and hence

X ().

Therefore, the general solution to the system is

Y = c1X16)‘1t + CQXQE)\Qt

4 1y
= <7> St + Co (_1> e o,
Example 2

, (3 -1
SolveY(1 5 Y

Solution The characteristic equation is

A—-3 -1

det()\I—A):‘ 1 N—5

-

which is A2 — 8\ 416 = 0. Solving for \, we have A\ = 4 with algebraic multiplicity
2. To find the corresponding eigenvector, we solve the linear system

(AI— A)X, = 0.



6.2. Homogeneous Linear Systems 123

For A = 4, we have

A - A)X; = (11 11) X, =0,

xi- ().

To find a second solution that is linear independent to the first, we let

and hence

Y, = Xite! 4+ Xoet.
Since X3 is the generalized eigenvector of A, we have a linear system
(M - A)X, =X;.
Solving the linear system gives
G-
1 1 To2 -1
Since we need any vector Xy, we set 150 = 0 and x90 = —1. We get

mathbfXs = <Ol>

and therefore the general solution is

Y = ClYl + CQYQ

1 1 0
=c (1) et + 02( (1) tett + <1> e4t>.
Example 3

4 -5
r_
Solve Y/ = (5 4 > Y.

Solution The characteristic equation is

A—4 =5

det()\IA)_‘ -

-

which is A2 — 8\ 4 41 = 0. Solving for A\, we have X\ = 4 & 53, which are complex
conjugate roots. To find the corresponding eigenvector, we solve the linear system

(AI— A)X =0.
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For A = 4 + 5i, we have

and hence _
i
x-(})-
Then,
0
B, =R(X) = (1) and
1
B, =3(X) = 0

Therefore, the two solutions are

Y, = ¢* (B cos 5t — By sin 5t)

= e4t< (?) cos bt — <(1)) sin 5t> and

Y, = e*(By cos 5t + By sin 5t)

= e4t< ((1)> cos bt + <?) sin 5t>,

and the general solution is

Y = ClYl + CQYQ

0 1 1 0
At . : at .
=ci€e ( <1) cos bt <O) sin 5t> + co€e < <0> cos bt + <1) sin 5t>
. —sindt\ 4 cosHt\ 44
—a < cos 5t ) e te (sin5t> €

Nonhomogeneous Linear Systems

6.3

For a nonhomogeneous first-order linear system

Y = AY + G,
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we are interested in the particular solution Y, so that we can conclude that the
general solution is
Y=Y.+Y,

where Y. is the solution to the homogeneous system

Y’ = AY.

Undetermined Coefficient Method

Recall from section 3.5 that we simply guessed the solution to the linear differential
equation

an(@)y"™ + an_1(@)y" D + -+ ar(@)y + ao(x)y = f(2)

where f(x) is either a polynomial, exponential function, sine or cosine function,
and finite sums or products of these functions. The method goes the same with
linear systems. Consider a nonhomogeneous linear system

Y' =AY + G

where the entries of G(t) consist of polynomials, exponential functions, sine or
cosine functions, and finite sums or products of these functions. Then one can
guess the form of the particular solution can compare the coefficients to get the
answer.

Example 1
4 2 2t
[
Solve Y' = (3 3)Y+ (3t+2>'

Solution Since
A—4 =2

det(/\I—A):‘ 3 a_3

)

the characteristic equation is (A —4)(A —3) — 6 = A2 — TA + 6 = 0. This gives two
distinct eigenvalues Ay = 1 and Ay = 6, and their corresponding eigenvectors are

xi-(3) max- ().

Therefore, the complementary solution is

Y. = XMt 4 epXpeMt = ¢ (23> e’ + e <1> -
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For the particular solution, since

G(t) = <3t2—|t— 2> - @ " @ ’

we guess the particular solution as

a c
Yp—t<b)+(d>.
Substituting Y, into the equation gives
a\ " 4 2 a n 4 2 c n 2t
b)  \3 3)\b 3 3)\d 3t+2
_ da+2b+2 n 4c+2d
~ \Ba+3b+3 3c+3d+2)"
Comparing the entries, we get

4da+20+2=0 3a+3b+3=0

4c+2d =a 3c+3d+2=hb.

Therefore, a =0, b= —1, ¢ =1, d = —2, and the particular solution is

1
Y, = (_t - 2) |
Finally, the general solution is

T O R

Even though the undetermined coefficient method seems useful, it is not as
straightforward as the undetermined coefficient method in section 3.5. For ex-
ample, if there are repeated eigenvalues, the form of Y, may be inconsistent. We
introduce a better method, called the variation of parameter method as introduced
in section 3.6.

Variation of Parameter Method
Recall that if

Y11 Y12 Yin

Y21 Y22 Yan
Yl = . ) YQ = . ) Tt Yn == .

Yni Yn2 Ynn
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are n solutions to the homogeneous linear system
Y = AY,

then
Y1 +eYso+ -+, Y,

is also a solution. Notice that the general solution can be written as a product of
two matrices

c1Y11 + Y12 + -+ Cplin

C1Y21 + CoY22 + -+ - + CplYon
caYi+eYo+ -+, Y, = )

C1Yn1 + C2Yn2 + -+ CnYnn

Y1 Y12 0 Yin C1
Y21 Y22 - Yon C2

= . . . . .| =®C.
Ynl Yn2 ° Ynn Cn

Here, U is called the fundamental matriz.

= Definition 6.3.1: Fundamental Matrix

The fundamental matrix of a linear system is defined by

Yii Y12 - Yin

Y21 Y22 0 Yon
wy=| . .

Ynl Yn2 e Ynn

Then, since the fundamental matrix consists of n column vectors which are
solutions to the linear system, the fundamental matrix satisfies

P = AP,

Lemma

det ¥ £ 0, and there exists an inverse matrix of W.
Proof. Since every column of ¥ is a linearly independent solution to the equation
X' = AX,

the determinant of W is equivalent to the Wronskian of the column vectors, which
cannot be zero.

det ¥ = W(Y1,Ya,...,Yn) 0. (]
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Assume that there exists a matrix

uy(t)
U (f)

U= .

un (1)

such that the particular solution to the nonhomogeneous linear system

Y =AY + G.

can be expressed by
Y, =9U.

Substituting Y,, into the system gives
Y, =9U +9'U
=¥U + AU
=AU+ G,

and hence
vU =G.

Since ¥ has an inverse, U can be found:

U =v1'G

U= /\Il‘lG.

Therefore, the particular solution is
Y, =¥ / v 1G,
and the general solution is
Y:@C+@/@*G
where integration is defined entrywise.

Example 2

5 1 —4t + 6
r_
Solve Y —(2 6)Y+(10t—4)'
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Solution Since
det(A\I— A) =

)

A—-5 -1
-2 A-6

the characteristic equation is (A — 5)(A — 6) — 2 = A2 — 11\ + 28 = 0. This gives
two distinct eigenvalues A\; = 4 and A2 = 7, and their corresponding eigenvectors

- (1) max ().

Therefore, the complementary solution is

are

1 1
Y. = XieMt 4 o Xpe?t = ¢y <—1> e + e (2> e

The fundamental matrix for the system is

¥o (X, Xs)— <_11 ;)

and its inverse ¥~ is

Therefore, the particular solution is

szxp/\lf—lc;
_11111—4t+6dt
S ) 3\-1 2/ \10t—14
1

_l/1 1 6t +2 i@t
3\—-1 2 24t — 14

1 1 3t2 4+ 2t

—1 2/ \12¢%2 — 14¢

L1562 — 12t

T 3\ 212 — 30t

(5t —4t

T\t —10t)”

and the general solution to the system is

Y=Y.+Y,

B 1Y\ 4 1\ 7 5t2 — 4t
Cl(—1)e +02(2>e T\ —0t)
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The Exponential Matrix

6.4

Recall that the first-order differential equation

y'(x) = cy(x)

cxT

has a solution y(x) = e“*. We can approach similarly for linear systems. For a

linear system

X' = AX
where A has constant entries, we use the exponential matriz method. Recall the
Taylor series of e”:

r 1 2 1 3
e f1+x+ax +§x 4+

The exponential matrix is defined similarly.

Definition 6.4.1: Exponential Matrix

For a n x n matrix with constant entries, the exponential matrix is defined

by

1 1
A _ 2 3 PP

Similarly, we define
1
3!
1
3!

1
A =T+ At + E(At)Q-l- (At)? + -

1
:I+At+§A2t2+ A3 4.

Note that we can commute A and ¢ since A is a matrix and t is a variable, so it’s
a scalar.

Computing Exponential Matrices

Example 1

_(a O At
IfA—(O b),thenﬁnde .
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Solution The matrix powers of A are

Therefore,

1 1
cﬁt:I+Ap%5A%?+§A%3+~.

(10 n at 0 +l a’t? 0 _’_l a3 0 L.
“\0 1 0 bt 200 0 b3t 3r\ 0 b3
L oo 1 33
1+at—|—5at +§at +- 0
_ ! ! 1 1
0 1+m+5¥ﬁ+—

3.3
Gt

— Theorem 6.4.1: Exponential Matrix for Diagonal Matrices

Let A be a diagonal matrix

a1 0 0
0 as2 0
A= .
0 0 Ann

Then, the exponential matrix for A is

eait 0 0

0 em=t ... 0
At

0 0 e eannt




132 Chapter 6. Systems of Differential Equations

How do we compute exponential matrices when A is not diagonal? For those
cases, we use the Laplace transform. We will soon prove that the exponential
matrix e®! is a solution to the initial-value problem Y’ = AY, Y(0) = L. If we
let X(s) = Z{Y ()} = Z{eA}, then

2{Y'} = Z{AY}
sX(s) —Y(0) = AX(s).

Solving for X(s), we have
X(s) = (sI—A)~%

Therefore, we can compute the exponential matrix
Al = 27 (s - A7

Example 2

Compute et where A = ( 2 _1>.

Solution We have

A= 27 H(sI- A1)

:"5’”‘1{<812 312>1}

s—2 —1

o1 (5712(1373) (s 751)7(327 3)
(s—=1)(s—=3) (s—1)(s—3)
1 1 1 1
] _
25371 SII 513 511 SI3
+

s—1 s—-3 s—1 s—3
1 [et 4¢3t of — g3t
5 (ete:st et+€3t>'

Solving Differential Equations

Derivatives are done entrywise. Since t is a scalar, A does not have any effects
when differentiating with respect to t. This means that, for example,

d
A = Antnfl'
dt "
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Lemma

i At _ A6At.

at©
Proof.
d At d 1 2,2 1 3.3
ZeAt = Z(T4+At+ —A —A
e dt(+ L+ G AT + AR+
0+ AL 2% DA
2! 3!
_ l 2,2 l 3,3 ) _ At
=A I+At+2lAt +3'At+ = Ae™. [ |

= Theorem 6.4.2: The Fundamental Matrix
For a homogeneous linear first-order system
Y' =AY

At

where A consists of constant entries, e** is a fundamental matrix.

Proof. 1f is evident that e2? is a solution to the system Y’ = AY. Since Y (0) =
eA0 =1, we have det eA® # 0. Since the determinant is equal to the Wronskian of
Al is a fundamental matrix. [

n column vectors, the exponential matrix e
The solution to the nonhomogeneous linear first-order system
Y =AY + G
can be expressed as

Y:lIlCJr\I'/\Il’lG.

Example 3

, (3 0 -3
SolveY—<O 9 Y + 9 )
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Solution We have

Y:\IIC—F‘II/\II’IG

Chapter 6. Systems of Differential Equations
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Autonomous Systems

6.5

Until now, we have looked at how to solve some linear systems. From now on, we
look at the system’s stability, or how it behaves when ¢ tends to infinity. We focus
on the analysis of autonomous systems.

Autonomous Systems

= Definition 6.5.1: Autonomous Systems

A first-order system

dyx

— = t e

dt fl( » Y1,Y2, 7yn)
dys

—_— = t e

dt f2( y Y1,Y2, 7yn)
dyn

— = t e

dt fl( y Y1,Y2, ayn)

is autonomous if the functions f;, fo, ..., f, are independent on t. That

is, if the system can be represented as

dy:
E _fl(yhy??"'ayn)
dyo
dt _fz(ylay27"'ayn)
dyn
W_fn(yhyQa"'ayn)'
If we set
1 g1
Y2 g2
Xt)=] . |andg=1| . |,
Yns gn

the autonomous system can be represented as
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The right-hand side is a vector field. If we set X(¢) as the position vector in a
n-dimensional space, then X(t)" is the velocity vector. The initial condition is
where the particle starts, and is denoted by

X(O) or XO-

This initial-value problem has a unique solution locally.

= Theorem 6.5.1: Existence and Uniqueness Theorem
Consider a first-order autonomous system
dyx
E - fl(ylay2, .. ayn)
dys
o f2(y1,y2, - -+ yn)
dyn
ﬁ - fl(ylayQ, DR yn)
with initial condition X(tg) = Xy,. If fi1, f2, ..., fn are continuous and
have continuous first partial derivatives, then there is a unique solution to
the system on the interval [ty — €, to + €.

Even though the uniqueness is not satisfied globally, we assume that there is a
globally unique solution.

Three Types of Solutions

Given a first-order autonomous system and initial condition X (0), there are three
types of solutions.

Type 1: Critical Point
Critical point solutions are constant solutions or a stationary point for all ¢. If
the initial condition Xy is a critical point, then the particle stays there. Since the
particle is stationary, X(t)’ = g(X(¢)) = 0, and a critical point is a solution to
algebraic equations

gl(X) =0
92(X) =0
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Type 2: Arc
Generally, a solution X(¢) is an arc. Note that this curve is simple: it cannot
cross itself. If the curve has an intersection P with itself, then the solution to the
autonomous system with initial condition X(¢,) = P will not be unique.

Type 3: Cycle
If a solution is periodic, that is, if there exists a real number T' > 0 such that
X(t+T) = X(t), then the solution will form a cycle and return to Xj.

Example 1

Classify the types of the solutions to the first-order autonomous systems below.

1. ¥=x—y
y/:$2+y2_8
X(0) =(2,2)

X(0) = (—5,4)

Solution 1. Substituting the initial condition X(0) = (2,2) into the system gives
¥=2-2=0
Yy =22422-8=0,

therefore (2,2) is a critical point.

2. Substituting the initial condition, one see that the initial condition (2,1) is not
a critical point. However, since the system is linear, we can actually solve the
system and look for the type of solution. Solving the system gives

xr = cle4t + 02€7t
Y = —cle4t + 202@”.

Applying the initial condition X(0) = (2,1), we have ¢; = 1, ¢ = 1, and the
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solution to the system is
z = et 4Tt
Y= —ett 4 2™,

Since the solution is not periodic, it is an arc.

3. The system is also linear, so solving the system gives
x = ci(sint — cost) + co(— cost —sint)
Yy = cpcost + cosint.

Applying initial condition, we have ¢; = 2 and ¢ = 3. Therefore, the solution to
the system is

r = —5cost —sint
y = 2cost + 3sint,

which is a cycle with period 27 since cost and sint is periodic with period 2.

Stability of Linear Systems

6.6

Consider a linear autonomous system

LA
g v by
d

d—Z:chrdy,

or

X/ (t) = (‘1 b) X(t) = AX(1)
c d
in matrix form. We are interested how X(t) behaves as ¢t goes to infinity, or

lim;_, oo X(t). Since (x,y) = (0,0) is a solution to the linear system

d
d—gtc:ax—i—by:()

dy

— =cr+dy =0,

dt 4
we use (0,0) as the critical point to analyze. There are three cases. The particle
may return to a critical point, remain close to a critical point if the solution is

periodic, or move away from the critical point. For the first two cases, we call the
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critical point locally stable; for the third case, we call the critical point unstable.
The stability depends on the eigenvalues .
The characteristic equation is

det(\I— A) =0.
Rearranging terms, we have
A —pA+q=0,

where
p=a+d=tr(A) and ¢ = ad — bec = det(A).

By the quadratic formula, we get that the two eigenvalues are

pE/p?—4q

A= 5

Case 1: Distinct Real Eigenvalues
If there are two distinct real eigenvalues, i.e. when p? — 4¢ > 0, then the general

solution is
X(t) = chleMt + CQXQS)\zt.

Without loss of generality, let A\; > Ao. Then, the solution can be expressed as
X(t) = 1 XMt 4 o Xpe?t
= M1 Xy + e XgeP2 7MY,
Here, we again divide into three cases, depending on the signs of A\; and As.

1. If A\; and Aq are both positive, i.e. if p and ¢ are both positive, lim;_,~, X ()
diverges, therefore the critical point is unstable.

2. If A1 and A, are both negative, i.e. if p < 0 and ¢ > 0, then lim;_,, X(¢) = 0,

and the critical point is stable.
3. If Ay is positive and ), is negative, i.e. if ¢ < 0, then lim;_, o X(t) = c1 X et
if ¢; # 0, but lim;_,o X(t) = 0 if ¢; = 0, so the critical point is saddle.

Case 2: Repeated Eigenvalues
If there are repeated eigenvalues, i.e. when p? — 4g = 0, then we divide into two
cases where if there are two linear independent eigenvectors or only one linear
independent eigenvector.

1. If there are two linear eigenvectors, then the general solution is
X(t) = 01X1€)\1t + 02X2€)\1t.

If A1 is negative, i.e. if p < 0, then lim;_,,, = 0, and the critical point is
called a degenerate stable node.
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If A is positive, i.e. if p > 0, then lim;_,,, diverges, and the critical point is
called a degenerate unstable node.

2. If there is one linear independent eigenvector, then the general solution is
X(t) = Clxleklt + 02(X1t8>\1t + Xge)\lt).

If A1 is negative, i.e. if p < 0, then lim;_,,, = 0, and the critical point is
called a degenerate stable node.

If A is positive, i.e. if p > 0, then lim;_,, diverges, and the critical point is
called a degenerate unstable node.

Therefore, we have that the critical point is a degenerate stable node if p < 0
and a degenerate unstable node if p > 0 independently of the number of linear
independent eigenvectors.

Case 3: Complex Conjugate Eigenvalues
If there are complex conjugate eigenvalues o & i3, i.e. when p? —4q < 0, then the
general solution is

X(t) = c1e(By cos ft — By sin Bt) + coe™ (B cos Bt + By sin 3t).
We now divide into three cases.

1. If the roots are pure imaginary, i.e. if « = 0, then
X(t) = ¢1(Bj cos St — By sin 8t) + co(B3 cos St + By sin 8t),
which is periodic. We then call the critical point center.

2. If the real parts are negative, i.e. if & < 0 and p < 0, then lim;_,, X(¢) = 0,
and the critical point is stable spiral.

3. If the real parts are positive, i.e. if @« > 0 and p > 0, then lim;_, ., X(¢)
diverges, and the critical point is unstable spiral.

The cases above can be summarized geometrically. The figure below is called
the stability chart, and it shows the summary of stability depending on p and gq.
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q
p’ =4q
stable unstable
spiral spiral
stable unstable
node center node
7 \ p
degenerate ddl degenerate
stable saddle unstable
node node
Figure 6.1: Stability Chart for Linear Systems
Example 1

Classify the critical point (0,0) of each linear system.

1. X'(t) = (_71 3) X (1)
2. X'(t) = G’ _51> X (1)
3. X/(t) = (g :Z) X (t)

4. X'(t) = (g _45> X(t)

Solution 1. We have p =1 and g = —30. Since ¢ < 0, the critical point is saddle.

2. We have p = 8 and ¢ = 16. Since p?> = 4q and p > 0, the critical point is
degenerate unstable node.

3. We have p =0 and ¢ = 9. Since p =0 and ¢ > 0, the critical point is center.

4. We have p = 8 and ¢ = 41. Since p? < 4q, p > 0, and ¢ > 0, the critical point
is unstable spiral.
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Stability of Nonlinear Systems
6.7

Unlike autonomous linear systems where (0,0) was always a critical point, au-
tonomous nonlinear systems do not have a specific critical point that works for
every system. There may be none, one, or many critical points. For example, in
example 1 in section 6.4, any point on y = x is a critical point for the first system.
The problem with multiple critical points is this: when the initial condition X
is not close enough to a critical point X, then it may go towards another criti-
cal point X5 instead of X;. Therefore, we need to classify critical points. Critical
points for autonomous nonlinear systems can be classified into stable critical points
and unstable critical points.

— Definition 6.7.1: Stable Critical Point

A critical point X; of an autonomous system is a stable critical point if
given any radius p > 0, there exists r > 0 such that if the initial condition
satisfies | Xy — X4| < r, then |X(t) — X;| < p for all ¢.

— Definition 6.7.2: Asymptotically Stable Critical Point

In the definition above, if lim; o X(t) = X; whenever |Xy — X;| < r, then
the critical point X; is called an asymptotically stable critical point.

= Definition 6.7.3: Unstable Critical Point

A critical point X; of an autonomous system is an unstable critical point
if there exists some radius p > 0 such that for any r > 0, there exists an
initial condition Xq such that |Xo — X;| < r yet |X(t) — X1| > p for at least
one t > 0.

Note that if a critical point is asymptotically stable, then it is stable.

Linearization

We start with a first-order equation ' = g(z). Let 21 be a critical point which
we want to know whether it is stable or not. Since it is hard to solve a nonlinear
equation z’ = g(z), we use the tangent line approximation

g(x) = g'(z1)(x — 21).

Then, the equation becomes
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Solving for x, we have

z =z + 9 (7t

We can now conclude that if ¢’(z1) < 0, then z; is a stable critical point, and if
¢'(z1) > 0, then 27 is an unstable critical point.

Example 1

Determine whether the critical point 7 of a first-order differential equation

2 =sinz

is stable or unstable.

Solution We have an approximation

¥ =sinz ~ —(z — 7).

Therefore, solving for = gives

x:ﬁ—i—e_t.

Since —1 < 0, the critical point 7 is stable.

Recall the formula for the tangent plane approximation of a function z = f(z,y)
near (1, Y1)

z = f(z,01) + fo(z,y1)(x — 21) + fy(z,y1) (Y — y1).

For a nonlinear system

dx

E = f(x,y)
% = g(ﬂc,y)

where X3 = (z1, 1) is a critical point satisfying f(x1,y1) = g(x1,y1) = 0, we have
two linearization formulas

o' = fa,y) & fa(n,y) (@ — 20) + fy (21, 01) (Y — 11)
v =9, y) = ga(z1,91)(@ — 1) + gy (€1, y1)(y — 91).
Therefore, the system can be represented as
(xl) _ (fz(ajhyl) fy(xlayl)> (x—:m)
Yy 9o (x1,91)  gy(z1,91) y—y1)’
which can be summarized as

X' = AX - X))
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where A is the Jacobian matrix

A= (fnen) Bl

and is denoted by A = f(X;). For the Jacobian matrix f(X;), if the real parts
of both eigenvalues are negative, then the critical point is stable, and if there is
an eigenvalue with a positive real part, then the critical point is unstable. This
is because if there is a positive real part o, the solution will contain e®?, which
diverges to infinity when ¢t — oo.

Example 2

Classify the critical points as stable or unstable.

dxr

2 2
— = —20
7 Tt +y
dy 2
a Y

Solution The critical points are points that satisfy
22 +1y2—-20=0
T — y2 = 07

which is (4,2) and (4, —2). For (4,2), the Jacobian matrix is

The eigenvalues are roots to the equation
det(A\I — A) = \? —4)\ — 36 = 0,

which gives A = 2 £+ 4/40. Since there is an eigenvalue with a positive real part,
the critical point (4, 2) is stable. For (4, —2), the Jacobian matrix is

fo(4,-2)  f,(4,-2)
f(Xy1) = <gm(4,—2) gy(47—2)>

:<f 44>.
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The eigenvalues are roots to the equation
det(\I — A) = A2 — 12X 4 36 = 0,

which gives A = 6. Since there is an eigenvalue with a positive real part, the
critical point (4, —2) is stable.

Not only classifying critical points as stable or unstable, we’re able to classify
types of critical points, as in section 6.5. The summarized stability chart is drawn
below.

stable unstable
stable spiral spiral

node

unstable
node

unstable

.

stable

saddle

Figure 6.2: Stability Chart for Nonlinear Systems

Notice that center, degenerated stable node, and degenerated unstable node
are not mentioned. This is because the formulas in the borderline p?> = 4q or
q = 0 are obtained by tangent plane approximations, so the actual function may
not be on the borderline. Therefore, we are unable to classify if the characteristic
equation of the linearization satisfies p? = 4q or ¢ = 0, and we can only say if the
critical point is stable or unstable. Also, if p = 0, we cannot even conclude that
the critical point is stable or unstable. We should use another method. For the
other five cases, the critical point can be categorized the same as what we have
done for linear systems, and they also have the same geometrical properties.
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Example 3

Classify the critical points as stable or unstable.

dzx

aladg 2,2
aw Y
dy

= = 2y — 3
7 T+ 2y

Solution The critical points are points that satisfy
-y =0
z+2y—3=0,

which is (1,1) and (-3, 3). For (1, 1), the Jacobian matrix is

The eigenvalues are roots to the equation
det(\I — A) = \? — 4\ +6 = 0.

Since p = 4 and ¢ = 6, we have p > 0, ¢ > 0, and p? < 4q. Therefore, the critical
point is unstable spiral. For (—3,3), the Jacobian matrix is

f2(=3,3)  fy(=3,3)
B = (gm<—3,3> gy<—3,3>>

(-6 -6
1 2 )
The eigenvalues are roots to the equation

det(\I — A) = \? +4)\ -6 = 0.

Since p = —4 and ¢ = —6 < 0, the critical point is saddle.
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Example 4

Classify the critical points as stable or unstable.

dz

- — 2_

aw Y

dy

Y5 —9y—3
ar Ot

Solution The critical points are points that satisfy
22 —y=0

5 — 2y — 3 =0,

which is (1,1) and <3, Z) For (1,1), the Jacobian matrix is

The eigenvalues are roots to the equation
det(A\I — A) =\ +1=0.

Since p = 0, we cannot classify the type of the critical point. For (3/2,9/4), the
Jacobian matrix is

The eigenvalues are roots to the equation
detONI—A) =X -\ —1=0.

Since p =1 and ¢ = —1 < 0, the critical point is saddle.
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The Phase Plane Method

Then, how should we classify critical points when (p, ¢) is in the borderline? One
approach can be done, which is called the phase plane method. Consider an
autonomous nonlinear system

dzr

T = f(z,y)
dy _

at = g(z,y).

The method is to actually solve the equation. Notice that

dy dy/dt  g(x,y)

de  dx/dt  f(z,y)

If we are lucky enough, then we may be able to get a separable first-order equation
and find the solution.

Example 5
Classify the critical point as stable or unstable.
dz 9
au Y
dy 2
at ~ "

Solution The critical points are points that satisfy

which is (0,0). The Jacobian matrix is

_ (£.(0,0)  £,(0,0)
f(Xy) = (gw(0,0) gy(Ovo))

A
~\0 0/
The eigenvalues are roots to the equation
det(\I — A) = \* = 0.

Since p = 0, we cannot classify the type of the critical point. We try to classify
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the critical point by using the phase plane method. Since

dy  dy/dt

de  dx/dt

we have a separable equation
y?dy = 2 dx.

/yzdy:/x2da:

13713
y73x +c

y = \S/x?’—l—c.

One can see that the particle moves away from the origin as ¢ increases. Therefore,
(0,0) is unstable.

Solving the equation, we get

Limit Cycles and Periodic Solutions

6.8

For linear equations, the critical point was a center if the eigenvalues were pure
imaginary. However, for nonlinear systems, we cannot conclude that a critical
point is a center because there might be an error in the linearization. This section
covers periodic solutions to nonlinear systems. The study of periodic solutions in
nonlinear systems involves limit cycles. We let

V(z,y) = (f(z,9), 9(z,y))
the velocity vector field of the autonomous system
o’ = f(z,y)

Y =g(z,y).

Definition 6.8.1: Limit Cycle

A limit cycle is a closed trajectory having the property that at least one
other trajectory spirals into it, either as time approaches infinity or as time
approaches negative infinity.

If there is a closed curve C, the nearby curves may also behave like C, just
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not closed. They may spiral towards C, spiral away from C, or both. If there is
at least one curve such spirals, then C is called a limit cycle. Limit cycles can be
classified into stable, unstable, or semi-stable.

Definition 6.8.2: Stable, Unstable, and Semi-Stable Limit Cycles

Let C be a limit cycle. If the trajectories nearby C' spiral towards C, then
C is a stable limit cycle. If the trajectories nearby C spiral away from C,
then C' is an unstable limit cycle. If the trajectories both spiral towards
and away, then C is a semi-stable limit cycle.

Note that stable limit cycles consist of trajectories that spiral into C when time
approaches infinity, and unstable limit cycles consist of trajectories into C' when
time approaches negative infinity.

Existence of Limit Cycles

When will limit cycles exist? The Poincare-Bendixson theorem illustrates a con-
dition for a limit cycle to exist.

— Definition 6.8.3: Invariant Region
For an autonomous system
x’ = f(xa y)
/

v =g(z,y),

the region R is called an invariant region if the solution X(t) for the system
with the initial condition X(0) = X stays inside R whenever X is in R.

For invariant regions, the velocity vector V(z,y) = (f(z,y),g(z,y)) always
points toward the interior of R, so that the particle always stay inside R.

~ Theorem 6.8.1: Poincare-Bendixson Theorem

Let R be an invariant region bounded by two curves Cy and Cs. If R contains
no critical points, then the autonomous system

a' = f(z,y)
Y =g(z,y)

has a periodic solution in R.

The proof is omitted since it requires analysis. The idea is that the particle can
never leave R since the velocity vectors point towards the interior of R. Therefore,
the particle should follow a curve or approach a critical point as t — co. However,
there aren’t any critical points in R, so the particle should follow a closed curve.
The criterion for invariant regions is stated in the theorem below.
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— Theorem 6.8.2: Criterion for Invariant Regions

Let R be a bounded region. For each point (x,y) on the boundary of R, let
V(z,y) be the velocity vector at (z,y) and N(z,y) be the normal vector at
(z,y). For any point (z1,y1) on the boundary of R, if V(z1,y1)-N(z1,y1) >
0, then R is an invariant region.

Proof. Given a region R, let 6(x,y) be the angle between V(z,y) and N(z,y).
Then, for any point (x1,y;) on the boundary of R, we have

V(‘Tlayl) ! N(Ilayl) = |V(I1,y1)”N(l’1,y1)‘ COSQ(:L’l,yl) >0

and cosf(x1,y1) > 0 since norms are positive. Therefore, 0° < (1, y1) < 90° for
every point (x1,y1) inside R. This makes the particle impossible to leave R and
hence R is an invariant region. |

Example 1
Show that the system

4 j—

r=—-x+y+axy

y =2’ +y

has a periodic solution.

Solution We claim that the region R bounded with 1/4 < 22 +9y? < 41is an
invariant region. Since the normal vector is N(z,y) = (—2z, 2y), we have

V(z,y) - N(z,y) = —22(—z + y + 2y) + 2y(2® + y)
= 222 — 22y + 2y°
:x2+y2+(:17—y)2 Zoa

which tells that R is an invariant region. The critical points are points that satisfy
the equations

—z+y+zy=0
? +y =0,

which is (0,0). Since (0,0) is not in R, R contains no critical points. Therefore,
the system has a periodic solution in R.
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Non-Existence of Limit Cycles

As well as existence criterions, there are also non-existence criterions.

= Theorem 6.8.3: Bendixson-Dulac Theorem

Suppose R is a simply connected region. If there exists a function ¢(z,y)
with continuous first partial derivatives such that

of) | 9(¢g)
Or + y

doesn’t change its sign in R, then the autonomous system

a = f(xay)

Y =g(z,y)

doesn’t have a periodic solution in R.

Proof. Assume that there is a periodic solution with period T" around a simple
closed curve C inside R, and let D be the region bounded by C. Since d(¢f)/0x+
0(¢g) /0y does not change its sign within R, we have

[/ (2 )

However, by Green’s theorem, we get

//< )d dy —qusfdyqsgda:)

/¢(fg gf)dt

Q

which is a contradiction. Therefore, the system does not have a periodic solution
in R. |

There aren’t specific rules for setting an appropriate function ¢(x,y), and one
should construct ¢(x,y) to make d(¢f)/0x + O(¢g)/dy positive or negative. For
some cases, ¢(z,y) = 1 would work. The corollary when ¢(x,y) = 1 is called the
Bendixson criterion.
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Corollary : Bendixson Criterion

Let f and g be functions such that df/0x and 9¢/Jy are continuous on a
region R which is simply connected. If

. 9f 0g
dlvv_5m+8y

doesn’t change its sign in R, then the autonomous system

o’ = f(x,y)
y' = g(z,y)
doesn’t have a periodic solution inside R.

Example 2
Show that the system

o=y’ +r+2y+6
Y =—y*+a® -2

does not have a periodic solution.

Solution We have

v, 9
dlvv_8x+3y

=y +1-3y* -2
=4y -1 <0.

Since div V is negative in every point, the system does not have a periodic solution
by the Bendixson criterion.

Example 3
Show that the system

' =ey —2x —ay

y =y +y

does not have a periodic solution.
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Solution With ¢(z,y) = y, we have

9(of) + d(¢g) :ewy2 f2y—y2+3y2+2y
ox dy

=e"y? +2y° > 0.

Since d(¢f)/0x + O(pg) /Oy is positive in every point, the system does not have a
periodic solution by the Bendixson-Dulac theorem.

Theorem 6.8.4: Critical Point Criterion

If an autonomous system has a periodic solution around a simple closed curve
C, then there is a critical point in the interior of C.

Notice that the critical point criterion can also be a cycle criterion.

Corollary : Periodic Solution Criterion

If a simply connected region R does not contain any critical points, then
there aren’t any periodic solutions in R.

Example 4
Show that the system

¥ = (x—1)% + 4>
Yy =az+y-—2

does not have a periodic solution.

Solution We use the periodic solution criterion. The critical points of the system
should satisfy

(z—1)2+4?=0
r+y—2=0.

The only point that satisfy the first equation is (1,0). However, this point doesn’t
satisfy z+y—2 = 0, and there are no critical points to the system. By the periodic
solution criterion, there aren’t any periodic solutions.
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