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Topological Spaces: Definitions

1.1 Topological Spaces

= Definition 1.1: Topology

Let X be a non-empty set. A topology on a set X is a family T of subsets
satisfying

e () and X arein 7.
e The union of any number of sets in 7 is in 7.

e The intersection of any two sets in 7 is in 7.

I Note The members of T are also called open sets.

Remark.

For a non-empty set X, the topology on X may not be unique. For these cases,
we write (X, 71), (X,72), and so on. The space of these topologies are called
the topological space.

Example 1

Let X = {a,b,c}. Then
e {{a},{a,c}, X} is not a topology since  is not included.
e {0,{a},{a,c}, X} is a topology.

e {(, X} is a topology.

= Theorem 1.1

Let {7;}icr be a collection of topologies on X. Then, n 7T; is also a topology
i€l
on X.

Proof. We prove that ﬂ T; satisfies the three axioms of a topology.
il
First, since each 7; is a topology on X, () and X isin 7; for all i € I. So () and X
are also in ﬂ T;.
iel

Next, for any set Gy € n’ﬁ forall k € K,s0 G € T, foralli € I and k € K.
i€l
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Therefore, U GreT;foralliel, and U Gy € ﬂ’ﬁ.

keK keK el
Finally, for any set Gy, € ﬂ'ﬁ fork=1,2,...,n,s0 G € T; for all i € I and
el
k=1,2, ..., n. Therefore, ﬂGk € T; forall i € I, and ﬂGk € ﬂﬂ.
i=1 i=1 iel

Therefore, m T; satisfies the three axioms of a topology, m 7T; is also a topology.
icl icl
[

Example 2
Let X = {a,b,c}, and
L4 71 = {(07 {a}a {a,c},X}
o 75 ={0,{a},{a,b}, X}
are topologies on X. Then, 71 N T3 = {0, {a}, X} is a topology, but
TiUTs = {(Z), {a},{c},{a, b},X} is not a topology.

Remark.

Unlike intersections, the union of topologies need not be a topology.

The three axioms of topology are equivalent to the following two axioms:

Corollary
T is a topology if and only if
e The union of any number of sets in 7 is in 7.

e The intersection of any finite number of sets in 7 is in 7.

Proof. We only have to prove axiom 1 of topology. It suffices to show that

UGi:Q)and ﬂGZ—:X.

€0 €0

First, suppose that there exists p € X such that p € U G;. Then, there exists
i€l
some ¢ € () such that p € G;, which is a contradiction. Therefore, U G;=0.
i€
Next, it is trivial that ﬂ G; € X. Suppose that there is some p € X such that
i€f
p ¢ ﬂ G;. Then, there exists some i € () such that p ¢ G, which is a contradiction.
i€
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So X C()Gi,and [)Gi = X. n
ich i€
We state four examples of topology:
e Discrete topology,
e Indiscrete topology,
e Cofinite topology,
e Cocountable topology.

Example 3

(X,D) where D = {A C X | Ais asubset of X}, or D is the power set of X,
is a discrete topology.

Example 4
(X,I) where I = {0, X} is an indiscrete topology.

Example 5

(X,T)where T={AeX|A=0or Al s finite} is a cofinite topology. Show
that this is actually a topology.

Solution By definition, §) € 7. Also, since XC = () is finite, X € T.
Now, for any G; € T for i € I, we have G is finite. Then, its intersection ﬂ GE

iel
is also finite. Now,
C
(UQ):ﬂ@g@
icl iel
C
by De Morgan’s law, and (U Gi> is finite. Therefore, U G, eT.
il iel
n B n
Finally, for any G; € T fori =1, 2, ..., n, (ﬂ G,») = UGE is finite, so
i=1 i=1

ﬁG,’ET.

=1

Therefore, (X, T) is a topology.
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Example 6

(X,7) where T = {A C X | A = 0 or A is countable} is a cocountable
topology. Show that this is actually a topology.

We define countable as either finite or countably infnite. For example, N, Z, Q
are countable, but R or R\ Q are uncountable.

Solution First, by definition, § € 7. Also, since X® = ) is countable, X € 7.
For any G; € T fori € I, GE is countable. Then, its intersection m GE is also

iel
countable. Now,

(UGi>B=ﬂGECGE

i€l i€l

C
by De Morgan’s law, and (U Gi> is countable. Therefore, U G, eT.
iel iel

n B n
Finally, for any G; € T fori =1, 2, ..., n, (m Gi> = U GE is countable, so
i=1

=1
m G, eT.
=1

Therefore, (X, T) is a topology.

1.2 Accumulation Points

Throughout this lecture, we let X a topological space, and A a closed set if not
explicitly mentioned.

= Definition 1.2: Neighborhood

For a point p € X, a set H C X is called a neighborhood of p if there
exists an open set GG such that p € G C H. If H is open, then we say that
H is an open neighborhood of p.

= Definition 1.3: Interior Point

A point p € X is called an interior point of H if there exists an open
neighborhood G of p such that G C H.
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Definition 1.4: Accumulation Point

Let X be a topological space, and let A a subset of X. A point p € X is an
accumulation point of A if and only if for any open neighborhood G of p,

AN(G\{p}) # 0.

This means that p is an accumulation point of A if for any neighborhood of p,
there exists an element of A inside that neighborhood. Here, p need not to be in

A.
We write A’ as the set of all accumulation points of A.

Example 7
Let X = {a,b,c,d}, A = {a,b}, and Ty = {0, X,{a,b},{d},{a,b,d}}. In
(X, Th),

Finding A’
Gofp G\ {p}
X, {a,b}, {a,b,d} | {b,c,d}, {b}, {b,d}
X, {a,b}, {a,b,d} | {a,c,d}, {a}, {a,d}
X {a,b,d}
X, {d}, {a,b,d} {a,b,c}, 0, {a,b}

QL O oI

we have A" = {a,b, c}.

Note If there is a one-point set in a topology, then the point cannot be an

accumulation point.

Example 8
Let X = {a,b,c¢,d}, A ={a,b}, and let T3 be the discrete topology, and T3 the
indiscrete topology.

In (X, 72), there are one-point sets for each p € X, namely {a}, {b}, {c}, and
{d}, none of them are accumulation points, and A’ = (.

In (X, 73), for any point p € X, the open neighborhood of p is only X. Since
(X \{p}) NA#0, pisan accumulation point for any p. Therefore, A’ = X.
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1.3 Closed Sets

We simply define closed sets as the reverse of open sets.

= Definition 1.5: Closed Set

Let X be a topological space. A subset A of X is a closed set if and only
if its complement AC is an open set.

Example 9
Let X = {a,b,c}, and

T = {Q»Xa {a}a {aa b}’ {a,c}}.

Then, since T is open, its complement,

{X.0,{b,c}, {c}, {b}}

is closed.

— Theorem 1.2

If {A;}ier is a collection of closed subsets of X, then ﬂ A; and U A; are
iel i=1
closed.

Proof. Since A; is closed, its complement A? is open for i € I. Then, by the

definition of topology, U AE is open. By De Morgan’s law, since
iel

C
U= ()
el iel

is open, its complement, ﬂ A; is closed.
il

n
Similarly, by the definition of topology, m A,[; is open. By De Morgan’s law, since
i=1

n n C
-0
=1 i=1

is open, its complement, U A; is closed. |
i=1
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Theorem 1.3

A subset (not necessarily closed) A of X is closed if and only if A" C A. That
is, any accumulation point of A is in A.

This theorem can be used to determine if a set is closed. Before we prove the
theorem, we start with a lemma.

Lemma
A set G is an open subset of X if and only if for any p € G, p is an interior
point of G. That is, there is an open neighborhood H of p such that H C G.
Proof. (=) Since G is open, for any point p € G, G is an open neighborhood of p.
That is, there is an open neighborhood H = G of p.
(<) For p € G, let H, the open neighborhood of p satisfying H, C G. Then,

G:Up

peG

c | JH, (peH,)
peG

caeww,ca

peG
=G.
This gives G C U H, and U H, C G, thus G = U H,,. Therefore, since H,, is
peG peG peG
open for all p, its union, G, is also open. |
We now prove the theorem.

Proof. (=)

I Claim. For all p € A’, p € A. That is, any accumulation point of A is in A.

We prove by contradiction. Suppose that there exists some p € A’ such that p ¢ A.
Since A is closed, AC is an open neighborhood of p. On the other hand, p € A’
implies that for any open neighborhood H of p, AN(H \ {p}) # 0. Taking H = AC,

we get AN (AE \ {p}) # (), which is a contradiction because

Am(AU\{p}) cAnAt=09.

Therefore, p € A, and A’ C A.

(<)
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Note To show that A is closed, we need to show that AC is open. However, T

is not explicitly stated here. This is why we need the lemma.

I Claim. For any p € AG7 there is an open neighborhood of p such that G C AC.

For any p € AL, by assumption, p ¢ A,sop ¢ A'. (A" C A) This implies that
there is an open neighborhood G of p such that AN (G \ {p}) = 0. Since, p ¢ A,

AN(G\{pH)=ANnG =10

Therefore, G C AC. By the lemma, AL s open, and hence A is closed. |

1.4 Closure of a Set

Consider a set B (not necessarily closed). The biggest closed set containing B is
X because elements in

T:{Q]’X’...}

are all open, and its complement contains X, which is closed. We now want to
consider the smallest closed set containing B.

Definition 1.6: Closure
|_The closure A of A C X is the smallest closed subset containing A.

This can also be defined by

A=F,

iel
where {F;};cs is a collection of closed subsets containing A. So for any closed

subset F' containing A,
ACACF.

It is not hard to see that A = A if and only if A is closed.
Remark.

A=A <& Ais closed.

Example 10

Let X = {a,b,c¢} and T = {(Z],X, {a},{a,b}. Then the closed sets are
{X,0,{b,c},{a}}. Then,

QAZ{a}:>/_l=X
e B={b} = B={bc}
e C={c}=C={c}
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Example 11
Let (X, T) be the cofinite space. That is, 7 = {A C X | A = 0 or AL is finite}.

If X is finite, then since 7 contains all subsets of X, X is discrete. Therefore,
VA C X, s0 A = A. Note that in discrete space, every set is open and closed
at the same time.

If X is infinite, we divide cases to if A is finite or infinite. Note that in cofinite
space, if a subset is finite, then it is closed. This is because

7 = {0, X, X\ {finite} }
consists of open sets, and its complement
{X,0, {finite} }

consists of closed sets.

If A is infinite, then A = X.

Lemma

If AC B, then A’ C B’.

Proof. We claim that Vp € A’, p € B’. Since p is an accumulation point of A,
there exists an open neighborhood G of p such that AN (G \ {p}) # 0. Then,

AN(G\{p}) #0 = BN (G\{p}) #0

because A C B. Therefore, p is an accumulation point of B, so p € B'. |

= Theorem 1.4

Forany AC X, A=AUA.

Proof. (2) By the definition of closure, A C A, and A is closed. By the lemma,
we have

SO

Therefore, A’ C Aand AC A, so A’UAC A.
(9)

I Claim. AU A’ is closed, i.e. (AU A")C is open.

10
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We prove that if Vp € (AU A’)C, there exists an open neighborhood G of p such
that G C (AU A")L. Since p e (AUANC, p¢ Aand p ¢ A’. So there is an open
neighborhood G of p such that

AN(G\{p}) =0.
Since A¢ A, AN (G\ {p}) =ANG =10, and G C AC.
Now, Vq € G, since G is an open neighborhood of g,

AN(G\ {g}) = 0.

This gives AN G =0, and since ¢ ¢ A', GN A’ = (). Therefore, G C (A")C.

So G C (AUA )B. Since p is an interior point and p was chosen arbitrarily, we
conclude that (AU A")¢ is open. [

Corollary
p € A if and only if for all open neighborhood G of p, AN G # 0.

Proof. (=) If p€ A, then p € A or p € A’. By definition of A’, ANG # 0.

(<) For some open neighborhood G, if ANG\ {p} =0, then p € A.
If ANG\ {p} # 0, then p is an interior point of A, so p € A’. Therefore,
p=AUA = A u

1.5 Interior, Exterior, Boundary

Definition 1.7: Dense
|_A set B is called dense in X if B = X.

This means Vp € X, pe Bor p € B'.

Definition 1.8: Interior
|_The interior of A, int(A) is the union of all open subsets contained in A.

Let {G;}icr be a collection of all open subsets contained in A. Then,

int(A) = | Gi.

iel
For all open set GG contained in A,
G Cint(A) C A.

Therefore, int(A) is the largest open set contained in A.

11
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Remark.
int(A) = A if and ouly if A is open.

Example 12
Let X = {a,b,c,d}, and T = {0, X, {a}, {b}, {a, b} }. Then,

o A={a,b,c} - int(4) = {a,b}
o B={b,c} — int(B) = {b}
o C'={a} — int(C) = {a}

— Theorem 1.5

int(A) = {p € A | p is an interior point of A}.

Proof. Let K = {p € A | p is an interior point of A}.
(©)
Claim. Vp € int(A), there exists an open neighborhood G of p such that G C A.

(p is an interior point of A)

Vp € int(A), int(A) is an open neighborhood of p contained in A by definition.
Therefore, p € K.
(2) Vp € K, there exists an open neighborhood G, such that G, C A. Then,

K=J{p}

pEK

SO U Gp O K is an open subset contained in A. By the definition of int(A4),
peEK

K C |G, Cint(A).

peK

Therefore, int(A) = K. [

12
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Definition 1.9: Exterior

The exterior of a set A, ext(A) is the interior of AL. That is, ext(A4) =
int(A°).

For any A, int(A) and ext(A) are disjoint.

= Definition 1.10: Boundary

The boundary of A, b(A) is a set of all points in X not belonging to both
int(A) and ext(A). That is,

b(A) = X \ (int(A) U ext(A))

Example 13
Let X = {a,b,c,d,e}, and T = {(Z],X, {a},{c,d},{a,c,d},{b,c, d,e}}. If we
let A ={b,c,d}, then

o int(A) = {c,d}

ext(A4) = {a}
b(A) = {b,e}
A=1{b,c,d, e}

A ={b,c,d, e}

Remark.
ANB# AN B in general, but AUB = AU B.

= Theorem 1.6

A =int(A) Ub(A).

Proof. Since int(A) Ub(A) = X — ext(A), it suffices to show that A = int(AC).

(C) Vp e AC, (p ¢ A) 3 an open neighborhood G of p such that AN G = () by the
(contraposition of the) corollary of theorem 1.4. Therefore, G C AG, which implies
that p is an interior point of A%, so p € int(A®).

(D) Vp € int(AL), since p is an interior point of A%, 3 an open neighborhood G of
p such that G C AL, Therefore, ANG =0, yielding G C AL so pE AL |

13
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1.6 Neighborhoods and Neighborhood Systems ———

= Definition 1.11: Nowhere Dense

A set B is called nowhere dense if int(B) = §.

= Definition 1.12: Neighborhood System

The class of all neighborhoods of p € X is called the neighborhood system
of p, and denoted by N,.

— Theorem 1.7: Neighborhood Axiom

Let X #0. N :2z € X — N(z): a nonempty collection of subsets of X
satisfies

1. Ae N(z) »z € A
2. AC B for some A € N(z) - B € N(z)
3. A, Be N(z) > AN B € N(z)

4. A, Be N(z)and A€ N(y) forVye B—-BCA

— Theorem 1.8: Kuratowski Closure Axiom
Let X # 0. Consider C': P(X) — P(X). satisfying
.C0)=0

2.VAC X, ACC(A)

—_

3. VA C X, C(C(A)) = C(A)

1. VA, BC X, C(AUB) = C(A) UC(B)

Since C(A) = A, the function that maps A to its closure satisfies the axioms above.

1.7 Sequences

Definition 1.13: Convergence

A sequence {a,}nen € X converges to some point a € X if for all open
neighborhood G of a, 3N € N such that

n>N —a, €G.

14
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Example 14

Let X be the discrete space. Then, a, — a as n — oo implies that for all
open neighborhood G of a, In € N such that a, € G if n > N. Set G as the
one-point set {a}. Then, a; = a if ¢ > n. This means since some time, a,
becomes a.

Example 15

Let X be the indiscrete space. Since G = X, every sequence in the indiscrete
space converges, and its value may not unique.

1.8 Fine and Coarse Topologies

= Definition 1.14: Fine and Coarse

Let 77 and 75 be topologies on X. If 73 C 75, we say that 75 is finer than
T1, or 71 is coarser than 7s.

If 71 # T2, we say one is strictly fine (or coarse) than the other.

— Definition 1.15: Comparable

We say 71 and T3 are comparable if one is a subset of other.

Example 16

Let 77 be the indiscrete topology and 75 the discrete topology. For any topology
T, 71 is coarser than 7, which is coarser than 7s.

1.9 Subspace Topologies

Definition 1.16: Subspace Topology

Let (X,7) be a topological space. For all Y C X, the condition Ty =
{GNY | G € T} is a topology on Y, which is called the subspace topology
or the relative topology.

Then, (Y, Ty) is called a subspace of (X, T). We just call (Y,Ty) as Y, and (X, T)
as X.

Remark.

Y is a subspace of X if and only if Y C X and for all open set G in Y, there
exists an open set H in X such that G=HNY.

Then, how do we know that 7y is actually a topology? We check the three condi-
tions.

15
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(1): DTy since e T,andY € Ty since X € T and X NY =Y.
(2): VG, € Ty, 3H; € T such that G; = H; NY. Thus,

Uei=J@E nY)

el el
=Yn (UH) €Ty.
i€l

(3): Similarly, we have

n
1=

1 =1

=YnN <0H2> €Ty.
=1

Remark.

A set may be open relative to a subspace but not open in the entire space.

16
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Bases and Subbases

2.1 Basis

— Definition 2.1: Basis
A collection of open sets B is called a basis of 7T if
e BCT
e VG €T, 3B} € Bsuch that G = | B..

Remark.

The second condition is equivalent to VG € T and Vp € G, 3B, € B such that
p€ B, CG.

Proof. (=) For all G € T, I{B;} C B such that G = UBi' Therefore, Vp € G,
i

3B, € {B;} C B such that p € B, C UBi =d.

(<) We have

G=J{

peG

:UBP

peG

:UG

peG

=G.

Therefore, G = U B,. |
peG

Example 1

The open intervals form a base for the topology on the line R.

Example 2

The open rectangles in the plane R?, bounded by sides parallel to the z-axis
also form a base B for the topology on R2. For, let G C R? be open and
p € G. There exists an open disk D,, centered at p with p € D, € G. Then

17
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any rectangle B € B whose vertices lie on the boundary of D,, satisfies

peEBCD,CQG.

Remark.

Given a collection B of subsets of a set X, B will not always be a basis for
some topology on X. Other conditions are also needed.

= Theorem 2.1

Let B be a nonempty collection of subsets of X. Then, B is a basis for some
topology 7T if and only if

1. 3{B;} C B such that X = UBZ-

2. VBy, By € B, BiN By =  B;.

Proof. (=) Exercise.
(<) Let T ={U, B: | {B} C B}.
We will check two things:

e T is a topology on X
e 3 is a basis of T (trivial)

We only prove the first one.
We have X € T by the first condition, and () € 7 by setting I = ().

VG; € T for (i € I), 3{Bi}ier such that G; = J,c; Bi. Therefore, | J,o; Gi =
U;(U; B;i) € T by the definition of 7.

VG, G2 € T, 3{By,} and {By,} C B such that Gy = |J; By, and Gy = U]. By, .
Then, G1NG2 = (U, Bli)ﬂ<UJ’ ng.) =U,, (B1, N By, ). By the second condition,
I Bij, } C Bsuch that Bi,NBs; = Jj, Bij,. Therefore, GiNG2 =, ; (U, Bij,) €
T. |

Remark.

Let By and By be bases of (X,71) and (X, 73), respectively. If VB € By,
HB;} C By such that
B=|JB;,
i

then 75 is finer than 77, i.e. 71 C 7.

18
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Proof. YG € Ty, 3{B;} C By such that G = |J, B;. VB;, H{B;‘j} C By C 75 such
that B; = U, By ;. Therefore, G = U, (U; B;,) € To. Now, if By C Bz, then
TiCT. "

Example 3

Let
B={(a,b]:a,beR,a<b}.

Show that B is a basis for some topology 7 in R.

Solution The union of all intervals are R. We now have (a,b] N (c,d] either the
empty set of another open-closed interval. Therefore, 3{B;}, and B is a basis.

2.2 Subbasis

= Definition 2.2: Subbasis
A collection S is called a subbasis of T if
1. SCT

2. {ﬂSz | {Si} C S} is a basis of T.

=1

Example 4

The class S of all infinite open intervals is a subbase for R.

Example 5

The class S of all infinite open strips is a subbase for R2.

= Theorem 2.2

Let S be a nonempty collection of subsets of X. Then there exists a unique
topology having S as a subbasis.

Proof. (Existence) Let B = {m Si | {S:} C S}.

i=1

I Claim. There exists a topology 7 having B as a basis.

First, 3{B;} C B such that

xX=JB
%

19
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since
(1Si=XeB
€0

Now, for all By, By € B, 3{B;} C B such that

BiNBy=|JB:
since 3{S1,} and {S,} C S such that

Bl = ﬁSll and BQ = ﬁ52j7
j=

=1

SO

&me:Oﬁ&Jm ﬁs% €B.
i=1 j=1

Therefore, there exists a topology T having B as a basis by the previous theorem.

(Uniqueness) Let T; and T3 be two topologies generated by B.

| Claim. 7i=7..
Since VB € B, 3{B;} C B such that
B=|/B;

because B = J; B where {B;} = {B}. Then, by the remark above, 7; is finer
than 75. But since 75 is also finer than 77, 71 = 7. [ |

Example 6
Let S = {{a},{a,c}}. Then,

B = {ﬁsz | {Si}CS}
i=1
- {X, {a}a{O'?C}}'

The topology generated by B is

T = {0,X,{a}.{a,c}},

and this is the unique topology having S as a subbasis.

20
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Theorem 2.3

Let S be a class of subsets of a nonempty set X. Then the topology 7 on X
generated by S is the intersection of all topologies on X that contain S.

2.3 Local Bases

= Definition 2.3: Local Basis

A local basis By, at p € X is a collection of subsets of X satisfying
1. VB € B,, B is an open neighborhood of p

2. For all open neighborhood G of p, 3B, € B, such that p € B, C G.

Example 7
Let X = {a,b,c,d}, and T = {0, X, {a,b},{a,b,d}}. Then the local bases of a
can be
B, ={X,{a,b},{a,b,d}} or {{a,b}}.
Remark.

For a point p, the local basis B, could not be unique.

= Theorem 2.4

Let {a,} C X be a sequence in X and p € X. Then, a, — p as n — oo if
and only if VB € B;, AN € N such that a,, € B for all n > N.

Proof. (=) Let B, = {B € B | p € B}. Then by definition, VB € B,, B is an open
neighborhood of p. Therefore, 3N € N such that if n > N then a,, € B.

(«<=) For any open neighborhood G of p, by the definition of a local basis, 3B € B,
such that B C G. Therefore, 3N € N such that if n > N, thena, e BCG. R
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Continuous Functions

Definition 3.1: Continuous

A function is continuous on X if for all open set G in Y, f~1(Q) is open in
X.

Lemma
Let B be a basis, and S be a subbasis. The continuity is equivalent to:

1. f: (X, Tx) — (Y,Ty) is continuous at every p € X if for all open
neighborhood G of f(p) in Y, f~1(G) is a neighborhood of p in X.

2. VB € B, f~Y(B) is open in X

3. VS eS8, f71(9) is open in X

4. For all closed set F in Y, f~1(F) is closed in X.
5. For all subset BC Y, f~1(B) C f~%(B)

6. For all subset A C X, f(A) C f(A) (OTVPE/L f(p) € f(A))

7. For all subset B C Y, f~(int(B)) C J(f

Proof. (1) (=) For all open neighborhood G of f(p), f~'(G) is open in X and
p € f71G),ie. f~1(G) is an open neighborhood of p in X.

(<) For all open set G in Y, f~1(G) is a neighborhood of p in X since G is an
open neighborhood of f(p). Then there exists an open set H, on X such that
p € H, C f~1(G). Therefore,

f7HG) = U {p}
€f-

P G)

c U H,
pEf~1(G)

c U (e
pef~1(G)

yielding f~1(GQ) = U H,, so f~1(G) is open in X.
pEf~H(G)
(2) (=) Trivial because VB € B, B is open in Y.
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(<) For all open set G in Y, Since B is a basis of Y, 3{B;} C B such that (fill)
(3) Exercise.

(4) (=) For all closed F in Y, since FC is open in Y, f~1(FC) = {f~1(F)}C is
open in X. Therefore, f~1(F) is closed.

(<) For all open set G in Y, G is closed in X. Then, f~*(G®) = {f~1(@)}C is
closed in X. Therefore, f~1(G) is open in X.

(5) (=) For all subset B C Y, by the definition of closure, B C B, which gives
fHB) S fY(B).

By (4), f~'(B) is closed in X, so f~1(B) C f~Y(B).

(<) For all closed set F in Y, f~1(F) C f~'(F) = f~*(F). Therefore, f~'(F) =
f~UF), so f~1(F) is closed in X.

(6) (=) For all subset A C X, since f(A) C f(A),
AC fTHf(A) S FHF(A).

By (4), f~'(f(A)) is closed in X and thus A C f~'(f(A)), yielding f(A4) C f(A).
(<) For all closed set F in Y, letting A = f~1(F), by (6),

f(A)C f(A)=F=F.

Then we have A C f~1(f(A)) € f~3F) = A. Since A C A, A = A, and
A= f=Y(F) is closed.

(7) (=) For all subset B C Y, since int(B) C B, f~!(int(B)) C f~1(B) where
f~1(int(B)) is open in X. Therefore, f~!(int(B)) C int(f~(B)).

(«<=) For all open set G in Y, by (7),
FHG) = 71 (int(G)) C int(f7H(G)).

By definition of an interior, int(f~*(G)) C f~YG), ie. f7HG) = int(f~HQG)).

= Definition 3.2: Open and Closed Mapping

e A function f: X — Y is called open if for all open set H € X, f(H)
is open in Y.

e A function f : X — Y is called closed if for all closed set F' in X,
f(F)is closed in Y.
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Example 1

Let X be a discrete space. Then every function from X to Y is continuous.

Example 2

Let Y be a discrete space. Then every function from X and Y is an open and
close d mapping.

= Theorem 3.1
Let f: X =Y. Then,

1. f is a closed mapping if and only if VA C X, f(A) C f(A).

C int(f(B)).

Proof. (1) (=) For any subset A C X, since A C A, f(A) C f(A). Since f
is a closedimapping, f(A) is cloed in Y. Therefore, by definition of a closure,
f(A) € f(A).

(<) For any closed set F' in X, by assumption, f(F) C f(F) = f(F). Sine
fE) C f(F), f(F)= f(F), and f(F) is closed in Y.

(2) Exercise. [

2. f is an open mapping if and only if VB C X, f(int(B))

= Definition 3.3: Homeomorphism

A function f: X =Y is called a homeomorphism if
e f is continuous on X
e f is an open mapping

e f is invertible (i.e. f is bijective).

The first two conditions are called bicontinuous. If there exists a homeomorphism
between X and Y, then we say that X is homeomorphic to Y.

= Definition 3.4: Topological

Let X satisfy the property P. We say that P is topological if every Y
homeomorphic to X satisfies the property P.

Note X is called disconnected if there exists open sets G and H such that

e G,H#
e GNH=10
e GUH =X.
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Example 3
The connectedness is a topological property.
Assume that X is disconnected and Y is an arbitrary topological space home-

omorphic to X. Since X is disconnected, there exist open sets G and H in X
such that

e G,H#D
e GNH=0
e GUH = X.

On the other hand, there exists a homeomorphism f : X — Y. Then we have
f(G) and f(H) are open in Y (since f is open)
F(G), F(H) # 0 (since G, H #0)
Ff(G)N f(H) = (since f is injective)

(G)u

f(G

f(H) =Y (since f is surjective)

Therefore, Y is disconnected, and connectedness (and disconnectedness) is a
topological property.

™ Definition 3.5: Sequentially Continuous

A function f : X — Y is called sequentially continuous at p € X if
V{a,} C X converging to p, f(a,) = f(p) as n — oo.

= Theorem 3.2

If a function f : X — Y is continuous at p € X, then f is sequentially
continuous at p € X.

Proof. By the definition of continuous, for any open set G of f(p) in Y, f~1(Q)
is a neighborhood of p in X, i.e. there exists an open set H of p such that
p € H C f~YG). For H, 3N € N such that if n > N, then a,, € H. This
f(an) € f(H) for all n > N, which implies that f(a,) — f(p) as n — oo. |

Remark.

The converse of the theorem is not true in general. That is, f may not be
continuous at p € X even f is sequentially continuous at p € X.

For example, consider (X, 7) where T is a cocountable topology. In (X, 7),
a, — p as n — oo implies that 3N € N such that if n > N, then a,, = p. That
is, for any open neighborhood G of p, AN € N such that if n > N, then a,, € G,
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ie. {p,an,ans1, -+, } C G. Since G is countable, GEPU({an, an1,- - }\{p})
is countable, so (G — {an,an+1, - })U{p} is an open neighborhood of p. Let
this neighborhood be H. For H, 9N, € N such that if n > N,, then a,, € H.
Letting N’ = max{N, N.}, we see that a, € G and a,, € H for all n > N,
which implies that a, = p for all n > N’.
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Topology on the Line and Plane

The real line, R, is an archimedian ordered field.

4.1 Open Sets in R

= Definition 4.1: Interior Point

Let A be a set of real numbers. A point p € A is an interior point of A if
there exists some open interval S, such that

p €S, CA.

= Definition 4.2: Open Set

The set A is open if each of its points is an interior point.

Example 1

An open interval (a,b), where a < b, is an open set.

Example 2

The real line R and the empty set () is also an open set.

Example 3

The closed interval [a, b], where a < b, is not an open set, because a and b are
not interior points.

= Theorem 4.1

The union of any number of open sets in R is open.

= Theorem 4.2

The intersection of any finite number of open sets in R is open.

Example 4

Consider the class of open intervals

Then the infinite intersection ﬂ A, = {0}, which is not an open set.

n=1
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Remark.

The intersection of any number of open sets in R need not be open.

4.2 Accumulation Points

= Definition 4.3: Accumulation Point

A point p € R is an accumulation point of A if for all open set G containing
D,

AN(G\{p}) #0.
Example 5
Let A= {1, %, %, e } The point 0 is an accumulation point of A.
Example 6

Every real number p € R is a limit point of Q.

— Theorem 4.3: Bolzano-Weierstrass

Let A be a bounded, infinite set of real numbers. Then A has at least one
accumulation point.

4.3 Closed Sets

= Definition 4.4: Closed Sets

A subset A of R is closed if and only if AL is open.

= Theorem 4.4

subset A of R is closed if and only if A contains each of its accumulation
points.

Example 7

The closed interval [a, b] is a closed set since its complement, (—oo,a) U (b, 00)
is an open set.
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Example 8

Theset A=41 o } is not closed since 0 is an accumulation point of A

W =

1
) 27
not belonging to A.

Remark.

Sets may be neither open not closed. For example, consider the half-open
interval (a, b].

4.4 Compactness

= Definition 4.5: Open Cover

A collection {O,} of open sets is called an open cover of a set S if S C

U Oa-

= Definition 4.6: Compact

A set S is compact if every open cover of S is covered by a union of a finite
subcover.

= Theorem 4.5: Heine-Borel

Every closed and bounded interval [a, b] is compact.

Example 9

1 1
n+2'n
but G does not have a finite subcover.

Let G =<4G,, = ) in € N}. Then, G is an open cover of A = (0, 1),

4.5 Sequences

|_ Definition 4.7: Sequence

A sequence is a function whose domain is N.

We call s(n) or s, the nth term of the sequence. A sequence is called to be bounded
if its range is a bounded set.
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= Definition 4.8: Convergence

A sequence (a,) converges to b € R if Ve > 0, 3ng € N such that
n>ng — la, — bl <e.

We write lim a, =0, lima,, =b, or a,, — b.
n—o0

Note The sequence {(a,) converges to b if every open set containing b contains

all but a finite number of terms of (a,).

4.6 Subsequences

™ Definition 4.9: Subsequence

If (i,,) is a sequence of positive integers such that i; < iy < ---, then the
sequence

<ai17ai2"">

is called a subsequence of (a,).

Example 10

111
Let {(a, <1 337 > The sequence <1,

bt 111 1 t,
u 436 1S not.

= Theorem 4.6

e > is a subsequence

N |
> =
| —

Every bounded sequence of real numbers has a convergent subsequence.

4.7 Cauchy Sequences

= Definition 4.10: Cauchy Sequences

A sequence (a,,) is called a Cauchy sequence if Ve > 0, Iny € N such that

m, n>ng = |am — an| <e.

Example 11

If {(a,) is a sequence of integers, then it is Cauchy if it is of the form
<a'17a27"' 7ano7babab"'>'
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Lemma

Every convergent sequence is Cauchy.

= Definition 4.11: Completeness

A set A is complete if every Cauchy sequence (a,, € A) converges to a point
in A.

Example 12

The set of integers is complete by the example above.

Example 13

The set of rational numbers is not complete. For instance, a sequence
(1,1.4,1.41,1.414, - --) converges to v/2 ¢ Q.

— Theorem 4.7: Cauchy

Every Cauchy sequence of real numbers converges to a real number.

Note The theorem above shows that R is complete.
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