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1
Topological Spaces: Definitions

1.1 Topological Spaces
Definition 1.1: Topology

Let X be a non-empty set. A topology on a set X is a family T of subsets
satisfying

• ∅ and X are in T .

• The union of any number of sets in T is in T .

• The intersection of any two sets in T is in T .

Note The members of T are also called open sets.

Remark.
For a non-empty set X, the topology on X may not be unique. For these cases,
we write (X, T1), (X, T2), and so on. The space of these topologies are called
the topological space.

Example 1
Let X = {a, b, c}. Then

•
{
{a}, {a, c}, X

}
is not a topology since ∅ is not included.

•
{
∅, {a}, {a, c}, X

}
is a topology.

• {∅, X} is a topology.

Theorem 1.1

Let {Ti}i∈I be a collection of topologies on X. Then,
⋂
i∈I

Ti is also a topology

on X.

Proof. We prove that
⋂
i∈I

Ti satisfies the three axioms of a topology.

First, since each Ti is a topology on X, ∅ and X is in Ti for all i ∈ I. So ∅ and X

are also in
⋂
i∈I

Ti.

Next, for any set Gk ∈
⋂
i∈I

Ti for all k ∈ K, so Gk ∈ Ti for all i ∈ I and k ∈ K.
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Therefore,
⋃
k∈K

Gk ∈ Ti for all i ∈ I, and
⋃
k∈K

Gk ∈
⋂
i∈I

Ti.

Finally, for any set Gk ∈
⋂
i∈I

Ti for k = 1, 2, . . . , n, so Gk ∈ Ti for all i ∈ I and

k = 1, 2, . . . , n. Therefore,
n⋂

i=1

Gk ∈ Ti for all i ∈ I, and
n⋂

i=1

Gk ∈
⋂
i∈I

Ti.

Therefore,
⋂
i∈I

Ti satisfies the three axioms of a topology,
⋂
i∈I

Ti is also a topology.

■

Example 2
Let X = {a, b, c}, and

• T1 =
{
∅, {a}, {a, c}, X

}
• T2 =

{
∅, {a}, {a, b}, X

}
are topologies on X. Then, T1 ∩ T2 =

{
∅, {a}, X

}
is a topology, but

T1 ∪ T2 =
{
∅, {a}, {c}, {a, b}, X

}
is not a topology.

Remark.
Unlike intersections, the union of topologies need not be a topology.

The three axioms of topology are equivalent to the following two axioms:

Corollary

T is a topology if and only if

• The union of any number of sets in T is in T .

• The intersection of any finite number of sets in T is in T .

Proof. We only have to prove axiom 1 of topology. It suffices to show that⋃
i∈∅

Gi = ∅ and
⋂
i∈∅

Gi = X.

First, suppose that there exists p ∈ X such that p ∈
⋃
i∈∅

Gi. Then, there exists

some i ∈ ∅ such that p ∈ Gi, which is a contradiction. Therefore,
⋃
i∈∅

Gi = ∅.

Next, it is trivial that
⋂
i∈∅

Gi ⊆ X. Suppose that there is some p ∈ X such that

p /∈
⋂
i∈∅

Gi. Then, there exists some i ∈ ∅ such that p /∈ Gj , which is a contradiction.
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So X ⊆
⋂
i∈∅

Gi, and
⋂
i∈∅

Gi = X. ■

We state four examples of topology:

• Discrete topology,

• Indiscrete topology,

• Cofinite topology,

• Cocountable topology.

Example 3
(X,D) where D = {A ⊆ X | A is a subset of X}, or D is the power set of X,
is a discrete topology.

Example 4
(X, I) where I = {∅, X} is an indiscrete topology.

Example 5
(X, T ) where T = {A ∈ X | A = ∅ or A∁ is finite} is a cofinite topology. Show
that this is actually a topology.

Solution By definition, ∅ ∈ T . Also, since X∁ = ∅ is finite, X ∈ T .

Now, for any Gi ∈ T for i ∈ I, we have G∁
i is finite. Then, its intersection

⋂
i∈I

G∁
i

is also finite. Now, (⋃
i∈I

Gi

)∁

=
⋂
i∈I

G∁
i ⊆ G∁

i

by De Morgan’s law, and

(⋃
i∈I

Gi

)∁

is finite. Therefore,
⋃
i∈I

Gi ∈ T .

Finally, for any Gi ∈ T for i = 1, 2, . . . , n,

(
n⋂

i=1

Gi

)∁

=

n⋃
i=1

G∁
i is finite, so

n⋂
i=1

Gi ∈ T .

Therefore, (X, T ) is a topology.
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Example 6
(X, T ) where T = {A ⊆ X | A = ∅ or A∁ is countable} is a cocountable
topology. Show that this is actually a topology.

We define countable as either finite or countably infnite. For example, N, Z, Q
are countable, but R or R \Q are uncountable.
Solution First, by definition, ∅ ∈ T . Also, since X∁ = ∅ is countable, X ∈ T .

For any Gi ∈ T for i ∈ I, G∁
i is countable. Then, its intersection

⋂
i∈I

G∁
i is also

countable. Now, (⋃
i∈I

Gi

)∁

=
⋂
i∈I

G∁
i ⊆ G∁

i

by De Morgan’s law, and

(⋃
i∈I

Gi

)∁

is countable. Therefore,
⋃
i∈I

Gi ∈ T .

Finally, for any Gi ∈ T for i = 1, 2, . . . , n,

(
n⋂

i=1

Gi

)∁

=

n⋃
i=1

G∁
i is countable, so

n⋂
i=1

Gi ∈ T .

Therefore, (X, T ) is a topology.

1.2 Accumulation Points
Throughout this lecture, we let X a topological space, and A a closed set if not
explicitly mentioned.

Definition 1.2: Neighborhood

For a point p ∈ X, a set H ⊆ X is called a neighborhood of p if there
exists an open set G such that p ∈ G ⊆ H. If H is open, then we say that
H is an open neighborhood of p.

Definition 1.3: Interior Point

A point p ∈ X is called an interior point of H if there exists an open
neighborhood G of p such that G ⊆ H.
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Definition 1.4: Accumulation Point

Let X be a topological space, and let A a subset of X. A point p ∈ X is an
accumulation point of A if and only if for any open neighborhood G of p,

A ∩ (G \ {p}) ̸= ∅.

This means that p is an accumulation point of A if for any neighborhood of p,
there exists an element of A inside that neighborhood. Here, p need not to be in
A.

We write A′ as the set of all accumulation points of A.

Example 7
Let X = {a, b, c, d}, A = {a, b}, and T1 =

{
∅, X, {a, b}, {d}, {a, b, d}

}
. In

(X, T1),

Finding A′

p G of p G \ {p}
a X, {a, b}, {a, b, d} {b, c, d}, {b}, {b, d}
b X, {a, b}, {a, b, d} {a, c, d}, {a}, {a, d}
c X {a, b, d}
d X, {d}, {a, b, d} {a, b, c}, ∅, {a, b}

we have A′ = {a, b, c}.

Note If there is a one-point set in a topology, then the point cannot be an
accumulation point.

Example 8
Let X = {a, b, c, d}, A = {a, b}, and let T2 be the discrete topology, and T3 the
indiscrete topology.

In (X, T2), there are one-point sets for each p ∈ X, namely {a}, {b}, {c}, and
{d}, none of them are accumulation points, and A′ = ∅.

In (X, T3), for any point p ∈ X, the open neighborhood of p is only X. Since
(X \ {p}) ∩A ̸= ∅, p is an accumulation point for any p. Therefore, A′ = X.
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1.3 Closed Sets
We simply define closed sets as the reverse of open sets.

Definition 1.5: Closed Set

Let X be a topological space. A subset A of X is a closed set if and only
if its complement A∁ is an open set.

Example 9
Let X = {a, b, c}, and

T =
{
∅, X, {a}, {a, b}, {a, c}

}
.

Then, since T is open, its complement,{
X, ∅, {b, c}, {c}, {b}

}
is closed.

Theorem 1.2

If {Ai}i∈I is a collection of closed subsets of X, then
⋂
i∈I

Ai and
n⋃

i=1

Ai are

closed.

Proof. Since Ai is closed, its complement A∁
i is open for i ∈ I. Then, by the

definition of topology,
⋃
i∈I

A∁
i is open. By De Morgan’s law, since

⋃
i∈I

A∁
i =

(⋂
i∈I

Ai

)∁

is open, its complement,
⋂
i∈I

Ai is closed.

Similarly, by the definition of topology,
n⋂

i=1

A∁
i is open. By De Morgan’s law, since

n⋂
i=1

A∁
i =

(
n⋃

i=1

Ai

)∁

is open, its complement,
n⋃

i=1

Ai is closed. ■
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Theorem 1.3

A subset (not necessarily closed) A of X is closed if and only if A′ ⊆ A. That
is, any accumulation point of A is in A.

This theorem can be used to determine if a set is closed. Before we prove the
theorem, we start with a lemma.

Lemma

A set G is an open subset of X if and only if for any p ∈ G, p is an interior
point of G. That is, there is an open neighborhood H of p such that H ⊆ G.

Proof. (⇒) Since G is open, for any point p ∈ G, G is an open neighborhood of p.
That is, there is an open neighborhood H = G of p.

(⇐) For p ∈ G, let Hp the open neighborhood of p satisfying Hp ⊆ G. Then,

G =
⋃
p∈G

p

⊆
⋃
p∈G

Hp (p ∈ Hp)

⊆
⋃
p∈G

G (Hp ⊆ G)

= G.

This gives G ⊆
⋃
p∈G

Hp and
⋃
p∈G

Hp ⊆ G, thus G =
⋃
p∈G

Hp. Therefore, since Hp is

open for all p, its union, G, is also open. ■

We now prove the theorem.

Proof. (⇒)

Claim. For all p ∈ A′, p ∈ A. That is, any accumulation point of A is in A.

We prove by contradiction. Suppose that there exists some p ∈ A′ such that p /∈ A.
Since A is closed, A∁ is an open neighborhood of p. On the other hand, p ∈ A′

implies that for any open neighborhood H of p, A∩(H \ {p}) ̸= ∅. Taking H = A∁,
we get A ∩

(
A∁ \ {p}

)
̸= ∅, which is a contradiction because

A ∩
(
A∁ \ {p}

)
⊆ A ∩A∁ = ∅.

Therefore, p ∈ A, and A′ ⊆ A.

(⇐)
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Note To show that A is closed, we need to show that A∁ is open. However, T
is not explicitly stated here. This is why we need the lemma.

Claim. For any p ∈ A∁, there is an open neighborhood of p such that G ⊆ A∁.

For any p ∈ A∁, by assumption, p /∈ A, so p /∈ A′. (A′ ⊆ A) This implies that
there is an open neighborhood G of p such that A ∩ (G \ {p}) = ∅. Since, p /∈ A,

A ∩ (G \ {p}) = A ∩G = ∅.

Therefore, G ⊆ A∁. By the lemma, A∁ is open, and hence A is closed. ■

1.4 Closure of a Set
Consider a set B (not necessarily closed). The biggest closed set containing B is
X because elements in

T = {∅, X, · · · }

are all open, and its complement contains X, which is closed. We now want to
consider the smallest closed set containing B.

Definition 1.6: Closure

The closure Ā of A ⊆ X is the smallest closed subset containing A.

This can also be defined by
Ā =

⋂
i∈I

Fi,

where {Fi}i∈I is a collection of closed subsets containing A. So for any closed
subset F containing A,

A ⊆ Ā ⊆ F .

It is not hard to see that A = Ā if and only if A is closed.

Remark.
Ā = A ⇔ A is closed.

Example 10
Let X = {a, b, c} and T =

{
∅, X, {a}, {a, b

}
. Then the closed sets are{

X, ∅, {b, c}, {a}
}
. Then,

• A = {a} ⇒ Ā = X

• B = {b} ⇒ B̄ = {b, c}

• C = {c} ⇒ C̄ = {c}

9
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Example 11
Let (X, T ) be the cofinite space. That is, T = {A ⊆ X | A = ∅ or A∁ is finite}.

If X is finite, then since T contains all subsets of X, X is discrete. Therefore,
∀A ⊆ X, so Ā = A. Note that in discrete space, every set is open and closed
at the same time.

If X is infinite, we divide cases to if A is finite or infinite. Note that in cofinite
space, if a subset is finite, then it is closed. This is because

T =
{
∅, X,X \ {finite}

}
consists of open sets, and its complement{

X, ∅, {finite}
}

consists of closed sets.

If A is infinite, then Ā = X.

Lemma

If A ⊆ B, then A′ ⊆ B′.

Proof. We claim that ∀p ∈ A′, p ∈ B′. Since p is an accumulation point of A,
there exists an open neighborhood G of p such that A ∩ (G \ {p}) ̸= ∅. Then,

A ∩ (G \ {p}) ̸= ∅ → B ∩ (G \ {p}) ̸= ∅

because A ⊆ B. Therefore, p is an accumulation point of B, so p ∈ B′. ■

Theorem 1.4

For any A ⊆ X, Ā = A ∪A′.

Proof. (⊇) By the definition of closure, A ⊆ Ā, and Ā is closed. By the lemma,
we have

A′ ⊆ (Ā)′ = Ā,

so
A′ ⊆ Ā.

Therefore, A′ ⊆ Ā and A ⊆ Ā, so A′ ∪A ⊆ Ā.

(⊆)

Claim. A ∪A′ is closed, i.e. (A ∪A′)∁ is open.

10
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We prove that if ∀p ∈ (A ∪ A′)∁, there exists an open neighborhood G of p such
that G ⊆ (A ∪ A′)∁. Since p ∈ (A ∪ A′)∁, p /∈ A and p /∈ A′. So there is an open
neighborhood G of p such that

A ∩ (G \ {p}) = ∅.

Since A /∈ A, A ∩ (G \ {p}) = A ∩G = ∅, and G ⊆ A∁.

Now, ∀q ∈ G, since G is an open neighborhood of q,

A ∩ (G \ {q}) = ∅.

This gives A ∩G = ∅, and since q /∈ A′, G ∩A′ = ∅. Therefore, G ⊆ (A′)∁.

So G ⊆ (A ∪ A′)∁. Since p is an interior point and p was chosen arbitrarily, we
conclude that (A ∪A′)∁ is open. ■

Corollary

p ∈ Ā if and only if for all open neighborhood G of p, A ∩G ̸= ∅.

Proof. (⇒) If p ∈ Ā, then p ∈ A or p ∈ A′. By definition of A′, A ∩G ̸= ∅.

(⇐) For some open neighborhood G, if A ∩G \ {p} = ∅, then p ∈ A.
If A ∩ G \ {p} ̸= ∅, then p is an interior point of A, so p ∈ A′. Therefore,
p = A ∪A′ = Ā. ■

1.5 Interior, Exterior, Boundary
Definition 1.7: Dense

A set B is called dense in X if B̄ = X.

This means ∀p ∈ X, p ∈ B or p ∈ B′.

Definition 1.8: Interior

The interior of A, int(A) is the union of all open subsets contained in A.

Let {Gi}i∈I be a collection of all open subsets contained in A. Then,

int(A) =
⋃
i∈I

Gi.

For all open set G contained in A,

G ⊆ int(A) ⊆ A.

Therefore, int(A) is the largest open set contained in A.

11
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Remark.
int(A) = A if and only if A is open.

Example 12
Let X = {a, b, c, d}, and T =

{
∅, X, {a}, {b}, {a, b}

}
. Then,

• A = {a, b, c} → int(A) = {a, b}

• B = {b, c} → int(B) = {b}

• C = {a} → int(C) = {a}

Theorem 1.5

int(A) = {p ∈ A | p is an interior point of A}.

Proof. Let K = {p ∈ A | p is an interior point of A}.
(⊆)

Claim. ∀p ∈ int(A), there exists an open neighborhood G of p such that G ⊆ A.
(p is an interior point of A)

∀p ∈ int(A), int(A) is an open neighborhood of p contained in A by definition.
Therefore, p ∈ K.

(⊇) ∀p ∈ K, there exists an open neighborhood Gp such that Gp ⊆ A. Then,

K =
⋃
p∈K

{p}

⊆
⋃
p∈K

Gp

⊆
⋃
p∈K

A

= A,

so
⋃
p∈K

Gp ⊇ K is an open subset contained in A. By the definition of int(A),

K ⊆
⋃
p∈K

Gp ⊆ int(A).

Therefore, int(A) = K. ■

12
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Definition 1.9: Exterior

The exterior of a set A, ext(A) is the interior of A∁. That is, ext(A) =

int(A∁).

For any A, int(A) and ext(A) are disjoint.

Definition 1.10: Boundary

The boundary of A, b(A) is a set of all points in X not belonging to both
int(A) and ext(A). That is,

b(A) = X \ (int(A) ∪ ext(A))

Example 13
Let X = {a, b, c, d, e}, and T =

{
∅, X, {a}, {c, d}, {a, c, d}, {b, c, d, e}

}
. If we

let A = {b, c, d}, then

• int(A) = {c, d}

• ext(A) = {a}

• b(A) = {b, e}

• Ā = {b, c, d, e}

• A′ = {b, c, d, e}

Remark.
A ∩B ̸= Ā ∩ B̄ in general, but A ∪B = Ā ∪ B̄.

Theorem 1.6

Ā = int(A) ∪ b(A).

Proof. Since int(A) ∪ b(A) = X − ext(A), it suffices to show that Ā∁ = int(A∁).

(⊆) ∀p ∈ Ā∁, (p /∈ Ā) ∃ an open neighborhood G of p such that A ∩G = ∅ by the
(contraposition of the) corollary of theorem 1.4. Therefore, G ⊆ A∁, which implies
that p is an interior point of A∁, so p ∈ int(A∁).

(⊇) ∀p ∈ int(A∁), since p is an interior point of A∁, ∃ an open neighborhood G of
p such that G ⊆ A∁. Therefore, A ∩G = ∅, yielding G ⊆ A∁, so p ∈ A∁. ■

13
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1.6 Neighborhoods and Neighborhood Systems
Definition 1.11: Nowhere Dense

A set B is called nowhere dense if int(B̄) = ∅.

Definition 1.12: Neighborhood System

The class of all neighborhoods of p ∈ X is called the neighborhood system
of p, and denoted by Np.

Theorem 1.7: Neighborhood Axiom

Let X ̸= ∅. N : x ∈ X 7→ N(x): a nonempty collection of subsets of X

satisfies

1. A ∈ N(x) → x ∈ A

2. A ⊆ B for some A ∈ N(x) → B ∈ N(x)

3. A, B ∈ N(x) → A ∩B ∈ N(x)

4. A, B ∈ N(x) and A ∈ N(y) for ∀y ∈ B → B ⊆ A

Theorem 1.8: Kuratowski Closure Axiom

Let X ̸= ∅. Consider C : P(X) → P(X). satisfying

1. C(∅) = ∅

2. ∀A ⊆ X, A ⊆ C(A)

3. ∀A ⊆ X, C(C(A)) = C(A)

4. ∀A, B ⊆ X, C(A ∪B) = C(A) ∪ C(B)

Since C(A) = Ā, the function that maps A to its closure satisfies the axioms above.

1.7 Sequences
Definition 1.13: Convergence

A sequence {an}n∈N ⊆ X converges to some point a ∈ X if for all open
neighborhood G of a, ∃N ∈ N such that

n ≥ N → an ∈ G.

14
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Example 14
Let X be the discrete space. Then, an → a as n → ∞ implies that for all
open neighborhood G of a, ∃n ∈ N such that an ∈ G if n ≥ N . Set G as the
one-point set {a}. Then, ai = a if i > n. This means since some time, an
becomes a.

Example 15
Let X be the indiscrete space. Since G = X, every sequence in the indiscrete
space converges, and its value may not unique.

1.8 Fine and Coarse Topologies
Definition 1.14: Fine and Coarse

Let T1 and T2 be topologies on X. If T1 ⊆ T2, we say that T2 is finer than
T1, or T1 is coarser than T2.

If T1 ̸= T2, we say one is strictly fine (or coarse) than the other.

Definition 1.15: Comparable

We say T1 and T2 are comparable if one is a subset of other.

Example 16
Let T1 be the indiscrete topology and T2 the discrete topology. For any topology
T , T1 is coarser than T , which is coarser than T2.

1.9 Subspace Topologies
Definition 1.16: Subspace Topology

Let (X, T ) be a topological space. For all Y ⊆ X, the condition TY =

{G∩Y | G ∈ T } is a topology on Y , which is called the subspace topology
or the relative topology.

Then, (Y, TY ) is called a subspace of (X, T ). We just call (Y, TY ) as Y , and (X, T )

as X.

Remark.
Y is a subspace of X if and only if Y ⊆ X and for all open set G in Y , there
exists an open set H in X such that G = H ∩ Y .

Then, how do we know that TY is actually a topology? We check the three condi-
tions.

15
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(1): ∅ ∈ TY since ∅ ∈ T , and Y ∈ TY since X ∈ T and X ∩ Y = Y .

(2): ∀Gi ∈ TY , ∃Hi ∈ T such that Gi = Hi ∩ Y . Thus,⋃
i∈I

Gi =
⋃
i∈I

(Hi ∩ Y )

= Y ∩

(⋃
i∈I

Hi

)
∈ TY .

(3): Similarly, we have

n⋃
i=1

Gi =

n⋃
i=1

(Hi ∩ Y )

= Y ∩

(
n⋃

i=1

Hi

)
∈ TY .

Remark.
A set may be open relative to a subspace but not open in the entire space.
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2
Bases and Subbases

2.1 Basis
Definition 2.1: Basis

A collection of open sets B is called a basis of T if

• B ⊆ T

• ∀G ∈ T , ∃{Bi} ∈ B such that G =
⋃
i

Bi.

Remark.
The second condition is equivalent to ∀G ∈ T and ∀p ∈ G, ∃Bp ∈ B such that
p ∈ Bp ⊆ G.

Proof. (⇒) For all G ∈ T , ∃{Bi} ⊆ B such that G =
⋃
i

Bi. Therefore, ∀p ∈ G,

∃Bp ∈ {Bi} ⊆ B such that p ∈ Bp ⊆
⋃
i

Bi = G.

(⇐) We have

G =
⋃
p∈G

{p}

=
⋃
p∈G

Bp

=
⋃
p∈G

G

= G.

Therefore, G =
⋃
p∈G

Bp. ■

Example 1
The open intervals form a base for the topology on the line R.

Example 2
The open rectangles in the plane R2, bounded by sides parallel to the x-axis
also form a base B for the topology on R2. For, let G ⊆ R2 be open and
p ∈ G. There exists an open disk Dp centered at p with p ∈ Dp ⊆ G. Then

17
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any rectangle B ∈ B whose vertices lie on the boundary of Dp satisfies

p ∈ B ⊆ Dp ⊆ G.

Remark.
Given a collection B of subsets of a set X, B will not always be a basis for
some topology on X. Other conditions are also needed.

Theorem 2.1

Let B be a nonempty collection of subsets of X. Then, B is a basis for some
topology T if and only if

1. ∃{Bi} ⊆ B such that X =
⋃
i

Bi

2. ∀B1, B2 ∈ B, B1 ∩B2 =
⋃
i

Bi.

Proof. (⇒) Exercise.

(⇐) Let T = {
⋃

i Bi | {Bi} ⊆ B}.

We will check two things:

• T is a topology on X

• B is a basis of T (trivial)

We only prove the first one.

We have X ∈ T by the first condition, and ∅ ∈ T by setting I = ∅.

∀Gi ∈ T for (i ∈ I), ∃{Bi}i∈I such that Gi =
⋃

i∈I Bi. Therefore,
⋃

i∈I Gi =⋃
i(
⋃

i Bi) ∈ T by the definition of T .

∀G1, G2 ∈ T , ∃{B1i} and {B2j} ⊆ B such that G1 =
⋃

i B1i and G2 =
⋃

j B2j .

Then, G1∩G2 = (
⋃

i B1i)∩
(⋃

j B2j

)
=
⋃

i,j

(
B1i ∩B2j

)
. By the second condition,

∃{Bijk} ⊆ B such that B1i∩B2j =
⋃

k Bijk . Therefore, G1∩G2 =
⋃

i,j (
⋃

k Bijk) ∈
T . ■

Remark.
Let B1 and B2 be bases of (X, T1) and (X, T2), respectively. If ∀B ∈ B1,
∃{B∗

i } ⊆ B2 such that
B =

⋃
i

B∗
i ,

then T2 is finer than T1, i.e. T1 ⊆ T2.

18
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Proof. ∀G ∈ T1, ∃{Bi} ⊆ B1 such that G =
⋃

i Bi. ∀Bi, ∃{B∗
i j} ⊆ B2 ⊆ T2 such

that Bi =
⋃

i B
∗
i j . Therefore, G =

⋃
i

(⋃
i B

∗
i j

)
∈ T2. Now, if B1 ⊆ B2, then

T1 ⊆ T2. ■

Example 3
Let

B = {(a, b] : a, b ∈ R, a < b}.

Show that B is a basis for some topology T in R.

Solution The union of all intervals are R. We now have (a, b] ∩ (c, d] either the
empty set of another open-closed interval. Therefore, ∃{Bi}, and B is a basis.

2.2 Subbasis
Definition 2.2: Subbasis

A collection S is called a subbasis of T if

1. S ⊆ T

2.

{
n⋂

i=1

Si | {Si} ⊆ S

}
is a basis of T .

Example 4
The class S of all infinite open intervals is a subbase for R.

Example 5
The class S of all infinite open strips is a subbase for R2.

Theorem 2.2

Let S be a nonempty collection of subsets of X. Then there exists a unique
topology having S as a subbasis.

Proof. (Existence) Let B =

{
n⋂

i=1

Si | {Si} ⊆ S

}
.

Claim. There exists a topology T having B as a basis.

First, ∃{Bi} ⊆ B such that
X =

⋃
i

Bi
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since ⋂
i∈∅

Si = X ∈ B.

Now, for all B1, B2 ∈ B, ∃{Bi} ⊆ B such that

B1 ∩B2 =
⋃
i

Bi

since ∃{S1i} and {S2j} ⊆ S such that

B1 =

n⋂
i=1

S1i and B2 =

m⋂
j=1

S2j ,

so

B1 ∩B2 =

(
n⋂

i=1

S1i

)
∩

 m⋂
j=1

S2j

 ∈ B.

Therefore, there exists a topology T having B as a basis by the previous theorem.

(Uniqueness) Let T1 and T2 be two topologies generated by B.

Claim. T1 = T2.

Since ∀B ∈ B, ∃{B∗
i } ⊆ B such that

B =
⋃
i

B∗
i

because B =
⋃

i B
∗
i where {B∗

i } = {B}. Then, by the remark above, T1 is finer
than T2. But since T2 is also finer than T1, T1 = T2. ■

Example 6
Let S = {{a}, {a, c}}. Then,

B =

{
n⋂

i=1

Si | {Si} ⊆ S

}

= {X, {a}, {a, c}} .

The topology generated by B is

T = {∅, X, {a}, {a, c}} ,

and this is the unique topology having S as a subbasis.
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Theorem 2.3

Let S be a class of subsets of a nonempty set X. Then the topology T on X

generated by S is the intersection of all topologies on X that contain S.

2.3 Local Bases
Definition 2.3: Local Basis

A local basis Bp at p ∈ X is a collection of subsets of X satisfying

1. ∀B ∈ Bp, B is an open neighborhood of p

2. For all open neighborhood G of p, ∃Bp ∈ Bp such that p ∈ Bp ⊆ G.

Example 7
Let X = {a, b, c, d}, and T = {∅, X, {a, b}, {a, b, d}}. Then the local bases of a
can be

Ba = {X, {a, b}, {a, b, d}} or {{a, b}} .

Remark.
For a point p, the local basis Bp could not be unique.

Theorem 2.4

Let {an} ⊆ X be a sequence in X and p ∈ X. Then, an → p as n → ∞ if
and only if ∀B ∈ Bi, ∃N ∈ N such that an ∈ B for all n ≥ N .

Proof. (⇒) Let Bp = {B ∈ B | p ∈ B}. Then by definition, ∀B ∈ Bp, B is an open
neighborhood of p. Therefore, ∃N ∈ N such that if n ≥ N then an ∈ B.

(⇐) For any open neighborhood G of p, by the definition of a local basis, ∃B ∈ Bp

such that B ⊆ G. Therefore, ∃N ∈ N such that if n ≥ N , then an ∈ B ⊆ G. ■
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3
Continuous Functions

Definition 3.1: Continuous

A function is continuous on X if for all open set G in Y , f−1(G) is open in
X.

Lemma

Let B be a basis, and S be a subbasis. The continuity is equivalent to:

1. f : (X, TX) → (Y, TY ) is continuous at every p ∈ X if for all open
neighborhood G of f(p) in Y , f−1(G) is a neighborhood of p in X.

2. ∀B ∈ B, f−1(B) is open in X

3. ∀S ∈ S, f−1(S) is open in X

4. For all closed set F in Y , f−1(F ) is closed in X.

5. For all subset B ⊆ Y , f−1(B) ⊆ f−1(B̄)

6. For all subset A ⊆ X, f(Ā) ⊆ f(A) (or ∀p ∈ Ā, f(p) ∈ f(A))

7. For all subset B ⊆ Y , f−1(int(B)) ⊆
∫
(f−1(B)).

Proof. (1) (⇒) For all open neighborhood G of f(p), f−1(G) is open in X and
p ∈ f−1(G), i.e. f−1(G) is an open neighborhood of p in X.

(⇐) For all open set G in Y , f−1(G) is a neighborhood of p in X since G is an
open neighborhood of f(p). Then there exists an open set Hp on X such that
p ∈ Hp ⊆ f−1(G). Therefore,

f−1(G) =
⋃

p∈f−1(G)

{p}

⊆
⋃

p∈f−1(G)

Hp

⊆
⋃

p∈f−1(G)

f−1(G)

= f−1(G),

yielding f−1(G) =
⋃

p∈f−1(G)

Hp, so f−1(G) is open in X.

(2) (⇒) Trivial because ∀B ∈ B, B is open in Y .
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(⇐) For all open set G in Y , Since B is a basis of Y , ∃{Bi} ⊆ B such that (fill)

(3) Exercise.

(4) (⇒) For all closed F in Y , since F ∁ is open in Y , f−1(F ∁) = {f−1(F )}∁ is
open in X. Therefore, f−1(F ) is closed.

(⇐) For all open set G in Y , G∁ is closed in X. Then, f−1(G∁) = {f−1(G)}∁ is
closed in X. Therefore, f−1(G) is open in X.

(5) (⇒) For all subset B ⊆ Y , by the definition of closure, B ⊆ B̄, which gives

f−1(B) ⊆ f−1(B̄).

By (4), f−1(B̄) is closed in X, so f−1(B) ⊆ f−1(B̄).

(⇐) For all closed set F in Y , f−1(F ) ⊆ f−1(F̄ ) = f−1(F ). Therefore, f−1(F ) =

f−1(F ), so f−1(F ) is closed in X.

(6) (⇒) For all subset A ⊆ X, since f(A) ⊆ f(A),

A ⊆ f−1(f(A)) ⊆ f−1(f(A)).

By (4), f−1(f(A)) is closed in X and thus Ā ⊆ f−1(f(A)), yielding f(Ā) ⊆ f(A).

(⇐) For all closed set F in Y , letting A = f−1(F ), by (6),

f(Ā) ⊆ f(A) = F̄ = F .

Then we have A ⊆ f−1(f(Ā)) ⊆ f−1(F ) = A. Since A ⊆ Ā, A = Ā, and
A = f−1(F ) is closed.

(7) (⇒) For all subset B ⊆ Y , since int(B) ⊆ B, f−1(int(B)) ⊆ f−1(B) where
f−1(int(B)) is open in X. Therefore, f−1(int(B)) ⊆ int(f−1(B)).

(⇐) For all open set G in Y , by (7),

f−1(G) = f−1(int(G)) ⊆ int(f−1(G)).

By definition of an interior, int(f−1(G)) ⊆ f−1(G), i.e. f−1(G) = int(f−1(G)).
■

Definition 3.2: Open and Closed Mapping

• A function f : X → Y is called open if for all open set H ∈ X, f(H)

is open in Y .

• A function f : X → Y is called closed if for all closed set F in X,
f(F ) is closed in Y .
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Example 1
Let X be a discrete space. Then every function from X to Y is continuous.

Example 2
Let Y be a discrete space. Then every function from X and Y is an open and
close d mapping.

Theorem 3.1

Let f : X → Y . Then,

1. f is a closed mapping if and only if ∀A ⊆ X, f(A) ⊆ f(Ā).

2. f is an open mapping if and only if ∀B ⊆ X, f(int(B)) ⊆ int(f(B)).

Proof. (1) (⇒) For any subset A ⊆ X, since A ⊆ Ā, f(A) ⊆ f(Ā). Since f

is a closed mapping, f(Ā) is cloed in Y . Therefore, by definition of a closure,
f(A) ⊆ f(Ā).

(⇐) For any closed set F in X, by assumption, f(F ) ⊆ f(F̄ ) = f(F ). Sine
f(F ) ⊆ f(F ), f(F ) = f(F ), and f(F ) is closed in Y .

(2) Exercise. ■

Definition 3.3: Homeomorphism

A function f : X → Y is called a homeomorphism if

• f is continuous on X

• f is an open mapping

• f is invertible (i.e. f is bijective).

The first two conditions are called bicontinuous. If there exists a homeomorphism
between X and Y , then we say that X is homeomorphic to Y .

Definition 3.4: Topological

Let X satisfy the property P . We say that P is topological if every Y

homeomorphic to X satisfies the property P .

Note X is called disconnected if there exists open sets G and H such that

• G, H ̸= ∅

• G ∩H = ∅

• G ∪H = X.
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Example 3
The connectedness is a topological property.

Assume that X is disconnected and Y is an arbitrary topological space home-
omorphic to X. Since X is disconnected, there exist open sets G and H in X

such that

• G, H ̸= ∅

• G ∩H = ∅

• G ∪H = X.

On the other hand, there exists a homeomorphism f : X → Y . Then we have

• f(G) and f(H) are open in Y (since f is open)

• f(G), f(H) ̸= ∅ (since G, H ̸= ∅)

• f(G) ∩ f(H) = ∅ (since f is injective)

• f(G) ∪ f(H) = Y (since f is surjective)

Therefore, Y is disconnected, and connectedness (and disconnectedness) is a
topological property.

Definition 3.5: Sequentially Continuous

A function f : X → Y is called sequentially continuous at p ∈ X if
∀{an} ⊆ X converging to p, f(an) → f(p) as n → ∞.

Theorem 3.2

If a function f : X → Y is continuous at p ∈ X, then f is sequentially
continuous at p ∈ X.

Proof. By the definition of continuous, for any open set G of f(p) in Y , f−1(G)

is a neighborhood of p in X, i.e. there exists an open set H of p such that
p ∈ H ⊆ f−1(G). For H, ∃N ∈ N such that if n ≥ N , then an ∈ H. This
f(an) ∈ f(H) for all n ≥ N , which implies that f(an) → f(p) as n → ∞. ■

Remark.
The converse of the theorem is not true in general. That is, f may not be
continuous at p ∈ X even f is sequentially continuous at p ∈ X.

For example, consider (X, T ) where T is a cocountable topology. In (X, T ),
an → p as n → ∞ implies that ∃N ∈ N such that if n ≥ N , then an = p. That
is, for any open neighborhood G of p, ∃N ∈ N such that if n ≥ N , then an ∈ G,
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i.e. {p, aN , aN+1, · · · , } ⊆ G. Since G∁ is countable, G∁∪({aN , aN+1, · · · }\{p})
is countable, so (G−{aN , aN+1, · · · })∪{p} is an open neighborhood of p. Let
this neighborhood be H. For H, ∃N∗ ∈ N such that if n ≥ N∗, then an ∈ H.
Letting N ′ = max{N,N∗}, we see that an ∈ G and an ∈ H for all n ≥ N ′,
which implies that an = p for all n ≥ N ′.
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4
Topology on the Line and Plane

The real line, R, is an archimedian ordered field.

4.1 Open Sets in R

Definition 4.1: Interior Point

Let A be a set of real numbers. A point p ∈ A is an interior point of A if
there exists some open interval Sp such that

p ∈ Sp ⊆ A.

Definition 4.2: Open Set

The set A is open if each of its points is an interior point.

Example 1
An open interval (a, b), where a < b, is an open set.

Example 2
The real line R and the empty set ∅ is also an open set.

Example 3
The closed interval [a, b], where a < b, is not an open set, because a and b are
not interior points.

Theorem 4.1

The union of any number of open sets in R is open.

Theorem 4.2

The intersection of any finite number of open sets in R is open.

Example 4
Consider the class of open intervals{

An =

{
− 1

n
,
1

n

}
: n ∈ N

}
.

Then the infinite intersection
∞⋂

n=1

An = {0}, which is not an open set.
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Remark.
The intersection of any number of open sets in R need not be open.

4.2 Accumulation Points
Definition 4.3: Accumulation Point

A point p ∈ R is an accumulation point of A if for all open set G containing
p,

A ∩ (G \ {p}) ̸= ∅.

Example 5

Let A =

{
1,

1

2
,
1

3
, · · ·

}
. The point 0 is an accumulation point of A.

Example 6
Every real number p ∈ R is a limit point of Q.

Theorem 4.3: Bolzano-Weierstrass

Let A be a bounded, infinite set of real numbers. Then A has at least one
accumulation point.

4.3 Closed Sets
Definition 4.4: Closed Sets

A subset A of R is closed if and only if A∁ is open.

Theorem 4.4

subset A of R is closed if and only if A contains each of its accumulation
points.

Example 7
The closed interval [a, b] is a closed set since its complement, (−∞, a)∪ (b,∞)

is an open set.
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Example 8

The set A =

{
1,

1

2
,
1

3
, · · ·

}
is not closed since 0 is an accumulation point of A

not belonging to A.

Remark.
Sets may be neither open not closed. For example, consider the half-open
interval (a, b].

4.4 Compactness
Definition 4.5: Open Cover

A collection {Oα} of open sets is called an open cover of a set S if S ⊆⋃
α

Oα.

Definition 4.6: Compact

A set S is compact if every open cover of S is covered by a union of a finite
subcover.

Theorem 4.5: Heine-Borel

Every closed and bounded interval [a, b] is compact.

Example 9

Let G =

{
Gn =

(
1

n+ 2
,
1

n

)
: n ∈ N

}
. Then, G is an open cover of A = (0, 1),

but G does not have a finite subcover.

4.5 Sequences
Definition 4.7: Sequence

A sequence is a function whose domain is N.

We call s(n) or sn the nth term of the sequence. A sequence is called to be bounded
if its range is a bounded set.
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Definition 4.8: Convergence

A sequence ⟨an⟩ converges to b ∈ R if ∀ϵ > 0, ∃n0 ∈ N such that

n ≥ n0 → |an − b| < ϵ.

We write lim
n→∞

an = b, lim an = b, or an → b.

Note The sequence ⟨an⟩ converges to b if every open set containing b contains
all but a finite number of terms of ⟨an⟩.

4.6 Subsequences
Definition 4.9: Subsequence

If ⟨in⟩ is a sequence of positive integers such that i1 < i2 < · · · , then the
sequence

⟨ai1 , ai2 , · · · ⟩

is called a subsequence of ⟨an⟩.

Example 10

Let ⟨an⟩ =
〈
1,

1

2
,
1

3
,
1

4
, · · ·

〉
. The sequence

〈
1,

1

2
,
1

4
,
1

8
, · · ·

〉
is a subsequence

of ⟨an⟩, but
〈
1,

1

4
,
1

3
,
1

6
, · · ·

〉
is not.

Theorem 4.6

Every bounded sequence of real numbers has a convergent subsequence.

4.7 Cauchy Sequences
Definition 4.10: Cauchy Sequences

A sequence ⟨an⟩ is called a Cauchy sequence if ∀ϵ > 0, ∃n0 ∈ N such that

m, n ≥ n0 → |am − an| < ϵ.

Example 11
If ⟨an⟩ is a sequence of integers, then it is Cauchy if it is of the form
⟨a1, a2, · · · , an0

, b, b, b · · · ⟩.
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Lemma

Every convergent sequence is Cauchy.

Definition 4.11: Completeness

A set A is complete if every Cauchy sequence ⟨an ∈ A⟩ converges to a point
in A.

Example 12
The set of integers is complete by the example above.

Example 13
The set of rational numbers is not complete. For instance, a sequence
⟨1, 1.4, 1.41, 1.414, · · · ⟩ converges to

√
2 /∈ Q.

Theorem 4.7: Cauchy

Every Cauchy sequence of real numbers converges to a real number.

Note The theorem above shows that R is complete.
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