
PROMYS - Modular Forms
Joshua Im

July 3 - August 10, 2023

Modular Forms is a course that I took in summer 2023, in the summer pro-
gram PROMYS (Program in Mathematics for Young Scientists) by Prof. David
Rohrlich. Sections are divided by each week, and subsections are divided by each
day of lecture. Problem sets were given every Monday, but listed in the last sub-
section of a section. I thank Diana Harambas, Emmy Huang, Eamon Zhang, and
Vincent Tran for helping me with taking notes.

1 Week 1

1.1 July 3, 2023
Definition 1.1: SL2(Z)

The modular group SL2(Z) is the set of 2 × 2 matrices with integer entries
such that their determinant is 1, under matrix multiplication. In other words,

if is the set of matrices γ =

(
a b

c d

)
such that det(γ) = ad− bc = 1.

Example 1

γ =

(
7 17

2 5

)
∈ SL2(Z) since det(γ) = 7 · 5− 17 · 2 = 1.

Definition 1.2: Matrix Multiplication

If γ =

(
a b

c d

)
and γ′ =

(
a′ b′

c′ d′

)
, then the matrix multiplication is

defined by

γγ′ =

(
a b

c d

)
γ′ =

(
a′ b′

c′ d′

)
=

(
aa′ + bc′ ab′ + bd′

ca′ + dc′ cb′ + dd′.

)
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Remark. (Matrix multiplication is not commutative)

Consider T =

(
1 1

0 −1

)
and S =

(
0 −1

1 0

)
. Then

TS =

(
1 −1

1 0

)
and ST =

(
0 −1

1 1

)
,

so TS ̸= ST .

Theorem 1.1: SL2(Z) is a group

SL2(Z), the modular group has the following properties:

• Associativity: For any γ, γ′, γ′′, (γγ′)γ′′ = γ(γ′γ′′)

• Identity element: There exist an identity element I =

(
1 0

0 1

)
∈

SL2(Z) such that
γI = Iγ = γ

• Inverse element: For any γ =

(
a b

c d

)
, there exist an inverse element

γ′ =

(
d −b

−c a

)
∈ SL2(Z) such that

γγ′ = γ′γ = I

Definition 1.3: Fractional Linear Transformation

Define H = {x+yi | y > 0}. Then the group SL2(Z) acts on H by fractional

linear transformations. That is, given γ =

(
a b

c d

)
, and z ∈ H,

γz =
az + b

cz + d
.

Claim. ℑ(γz) > 0.
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Proof. Let γ =

(
a b

c d

)
∈ SL2(Z), and z = x+ yi ∈ H. Then

γz =
az + b

cz + d
=

az + b

cz + d
· cz̄ + d

cz̄ + d

=
(az + b)(cz̄ + d)

|cz + d|2

=

(
(ax+ b) + i(ay)

)(
(cx+ d)− i(cy)

)
|cz + d|2

.

Hence ℑ(γz) = (ad− bc)y

|cz + d|2
=

y

|cz + d|2
> 0. ■

1.2 July 5, 2023

Define T =

(
1 1

0 1

)
and S =

(
0 −1

1 0

)
.

Example 2 (Action on T and S on H)

Tz =
z + 1

1
= z + 1

Sz =
0z − 1

1z + 0
= − 1

|z|
= − z̄

|z|2

In H, Tz has the effect of shifting 1 unit to the right. Also, the three points
(0, 0), Sz, and −z̄ is collinear.

Theorem 1.2: Euler’s Formula

eiθ = cos θ + i sin θ.

Proof. In you use the Taylor series,

ex = 1 + x+
x2

2!
+

x3

3!
+ · · ·

cosx = 1− x2

2!
+

x4

4!
− x6

6!
+ · · ·

sinx = x− x3

3!
+

x5

5!
− x7

7!

Then, eiθ = 1 + iθ − θ2

2!
− i

θ3

3!
+ · · · = cos θ + i sin θ. ■
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Definition 1.4: Modular Form of Weight k

Fix k ∈ Z. A modular form of weight k for SL2(Z) is a function f : H →
C such that

1. f(γz) = (cz + d)kf(z)

2. There exists a convergent series representation
f(z) =

∑
n≥0

a(n)e2πinz on H, for some a(1), a(2), · · · ∈ C.

Example 3
Take k = 0, and choose any constant in C. Say 17. Define f(z) = 17 for all z.
Then

1. f(γz) = 17 = (cz + d)0f(z)

2. f(z) = 17 =
∑

a(n)e2πinz with a(0) = 17 and a(n) = 0 for n > 0.

Example 4 (Non-example)
Take k = −2, and define f(z) = y. Then

f(γz) = y(γz) =
y

|cz + d|2
= |cz + d|−2f(x)

This is not an example of a modular form because there is an absolute value
sign.

1.3 July 6, 2023

Example 5
Fix k ∈ Z, k ≥ 4 and even. Consider

f(z) =
∑

(m,n)̸=(0,0)

(mz + n)−k

=
∑

(m,n)̸=(0,0)

1

(mz + n)k

=
∑
m∈Z

∑
n∈Z

1

(mz + n)k
(m,n) ̸= (0, 0)

and assume convergence.

We first verify property 1.
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Proof. Let γ =

(
a b

c d.

)

f(γz) =
∑(

m
az + b

cz + d
+ n

)−k

=
1∑(

m
az + b

cz + d
+ n

)k

=
1

1
(cz+d)k

(
m(az + b) + n(cz + d)

)k
= (cz + d)k

∑
(m,n)̸=(0,0)

1(
(ma+ nc)z + (mb+ nd)

)k
= (cz + d)k

∑
(m,n)̸=(0,0)

1

(m′z + n′)k

for m′ = ma + nc and n′ = mb + nd. Then, we must check that every (m′, n′) ∈
Z2 \ {(0, 0} occurs exactly once. In other words, given (m′, n′), there is a unique
solution (m,n) ∈ Z2 \ {(0, 0} to

(
m n

)(a b

c d

)
=

(
m′ n′) .

Since SL2(Z) is a group, for any γ ∈ SL2(Z), there exists an inverse element γ−1.
Then (m,n) = (m′, n′)γ−1 satisfies the equation since(

(m′, n′)γ−1
)
γ = (m′, n′)I = (m′, n′). ■

Therefore, property 1 holds. Also, from now on, use the notation

f(z) =
∑

(m,n) ̸=(0,0)

(mz + n)−k = Sk(z).

Question. Why did we define Sk(z) for only even k?

What happens when k becomes odd?

Claim. Sk(z) = 0 when k is odd.

Proof. Let k be odd.

Apply f(γz) = (cz+d)kf(z) with γ = −I =

(
−1 0

0 −1

)
. Then γz =

−z + 0

0− 1
= z,

and (cz+d)k = (0z−1)k = −1. Therefore, we get f(z) = −f(z), and f(z) = 0. ■
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Lemma : Any Modular Form is Periodic

If f(z) is any modular form, then f(z + 1) = f(z).

Proof. Apply f(γz) = (cz + d)kf(z) with γ = T =

(
1 1

0 1

)
. Then, since Tz =

z + 1

0z + 1
= z + 1 and (cz + d)k = 1k = 1, we get

f(z + 1) = 1kf(z) = f(z). ■

To verify property 2, we must show that there is a convergent series represen-
tation

f(z) =
∑
n≥0

a(n)e2πinz.

Problem Set 1: The modular group

Problem 1
Define the product of two 2× 2 matrices by the formula(

a b

c d

)(
a′ b′

c′ d′

)
=

(
aa′ + bc′ ab′ + bd′

ca′ + dc′ cb′ + dd′

)
.

(In the problem and the next, we take a, b, c . . . to be real numbers.)
(a) Verify that for three 2× 2 matrices γ, γ′, γ′′ we have γγ′)γ′′ = γ(′γ′′).
(b) Verify that the operation of matrix multiplication on the set of 2 × 2

matrices has a unique multiplicative identity, namely the matrix I with a =

d = 1 and b = c = 0.

Problem 2
The determinant of a 2× 2 matrix γ is the number det γ = ad− bc.

(a) Verify that det(γγ′) = det(γ) det(γ′).
(b) Show that if det γ ̸= 0 then the matrix

γ′ =
1

ad− bc

(
d −b

−c a

)
(with entries d/(ad−bc), −b/(ad−bc), and so on) satisfies γγ′ = 1 and γ′γ = 1.
Thus γ′ is a multiplicative inverse of γ. Often multiplicative is understood, and
we speak simply of an inverse of γ.

(c) Show that an inverse of γ, if it exists, is unique, so we can speak of the
inverse of γ, which we henceforth denote γ−1 rather than γ′.

(d) In (b) we showed that the condition of det γ = ̸= 0 is sufficient for γ to
have an inverse. Now use (a) to show that this condition is necessary. In other
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words, show that if γ has an inverse then det γ ̸= 0.

Problem 3
Henceforth we take a, b, c, . . . to be integers, and we write SL2(Z) for the set of
2×2 matrices with integer coefficients and determinant 1. Show that SL2(Z) is
closed under the operation of matrix multiplication and the operation of taking
inverses, whence this operation makes SL2(Z) into a group: The operation is
associative, there is a multiplicative identity, and every element has an inverse.

Problem 4
Define matrices

T =

(
1 1

0 1

)
and U =

(
1 0

1 1

)
,

For n ∈ Z and γ ∈ SL2(Z), verify that Tnγ is the matrix obtained from γ

by adding n times the second row of γ to the first row, while Un is obtained
by adding n times the first row to the second row. (In particular, Tn and Un

differ from T and U only by having an n in the upper righthand corner in the
case of T and in the lower left-hand corner in the case of U .) Explain why
there is a finite sequence of such “row operations” which transforms γ into the
identity matrix I. (First verify that −I = U2T−1U2T−1.) Deduce that T and
U generate SL2(Z): In other words, every element in SL2(Z) can be written
as a finite product Tn1Un2Tn3Un4 . . . with ni ∈ Z.

Problem 5
Illustrate the previous problem by writing the matrix

γ =

(
7 5

4 3

)
explicitly as a finite product of the form Tn1Un2Tn3Un4 . . . with ni ∈ Z.

Problem 6
Put

S =

(
0 −1

1 0

)
.

Verify the identity ST−1S−1 = U , and deduce that S and T also generate
SL2(Z).

Problem 7
Put

S =

(
0 −1

1 0

)
.
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Verify that S−1R = T and deduce that R and S are yet another pair of
generators for SL2(Z). It may seem silly to exhibit three different pairs of
generators for SL2(Z), but each has its special properties. For example, show
that S2 = R3 = −I.

Problem 8
Given an integer N ≥ 1, we write Γ1(N) for the subset of SL2(Z) consisting
of those γ for which c ≡ 0 and a ≡ d ≡ 1 modulo N . (Thus if N = 1 then
Γ1(N) is just SL2(Z) itself.) Show that Γ1(N) is a subgroup of SL2(Z): in
other words, it is closed under multiplication, it contains I, and it contains the
inverse of each of its elements.

Problem 9
Let N = 1, 2, 3, or 4, and define T and U as in Problem 4. Put V = UN .
This problem is a generalization of Problem 4: The matrices T and V generate
Γ1(N). To prove this, let Γ be the subgroup of Γ1(N) consisting of all finite
products of the form Tn1V n2Tn3V n4 . . . with n ∈ Z. (Why is this a subgroup?)
We must show that Γ = Γ1(N). Let γ denote an arbitrary element of Γ1(N).

(a) Show that if a = 0 or c = 0 then γ ∈ Γ. (Hint: Observe that if a = 0

then N = 1 and if c = 0 then N = 1 or 2 and in addition, γ = ±Tn for
some n. In these cases, you can simply use Problem 4, including the identity
−I = U2T−1U2T−1, which if N = 1 can be written −I = V T−1V T−1.)

(b) Use double induction on |c| and |a| to show that γ ∈ Γ. For the inductive
step, take ac ̸= 0 and assume that γ′ ∈ Γ for all matrices γ′ ∈ Γ1(N) such
that either |c′| < |c| or |c′| = |c| and |a′| < |a|. If |c| ≤ N |a|/2 show that with
an appropriate choice of sign the inductive hypothesis applies to the matrix
γ′ = T±1γ, and if |c| > N |a|/2 show that the same is true with γ′ = V ±1γ.

Problem 10
Define a function ω from SL2(Z) to the integers mod 12 by the formula

ω(γ) = (1− c2)(db+ 3d(c− 1) + c+ 3) + c(d+ a+ 3) mod 12.

The purpose of this problem is to prove that ω(γδ) = ω(γ) + ω(δ).
(a) Show that if c and d are relatively prime integers then c2−(cd)2+d2 ≡ 1

modulo 3 and modulo 4, hence modulo 12.
(b) Let T be as in Problem 4. Show that ω(Tγ) = ω(T ) + ω(γ).
(c) Let U be as in Problem 4. Show that 4ω(Uγ) = 4ω(U) + 4ω(γ). You

may want to consider a division into four cases as follows: (i) a ≡ 0 mod 3,
(ii) c ≡ 0 mod 3, (iii) a ≡ c mod 3, (iv) a ≡ −c mod 3. Don’t forget that
ad− bc = 1!

(d) Now show that 3ω(Uγ) = 3ω(U) + 3ω(γ). Once again, a division into
cases may be helpful: (i) a ≡ 0 mod 2, (ii) c ≡ 0 mod 4, (iii) c ≡ 2 mod 4, (iv)
a ≡ c mod 4, and (v) a ≡ −c mod 4.
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(e) Conclude that ω(γδ) = ω(γ) + ω(δ) for all γ, δ ∈ SL2(Z).

2 Week 2

2.1 July 10, 2023
Definition 2.1: Bernoulli Numbers

Define the Bernoulli numbers b0, b1, b2, · · · by
t

et − 1
=

∑
k≥0

bk
tk

k!
.

We know the Taylor series for ex : 1 + t+
t2

2!
+

t3

3!
+ · · · .

Since
t

et − 1
=

∑
k≥0

bk
tk

k!
,

t = (et − 1)
∑
k≥0

tk

k!

=

(
t+

t2

2
+

t3

6
+ · · ·

)(
b0 + b1t+ b2

t2

2
+

¯
3
t3

6
+ · · ·

)

= b0t+

(
b0
2

)
t2 +

(
1

6
b0 +

1

2
b1 +

1

2
b2

)
t3 + · · · .

Therefore, the coefficients for tk should be all 0 for k > 2. If you compute some
Bernoulli numbers with comparing the coefficients, you get

• b0 = 1

• b1 = −1/2

• b2 = 1/6

• b3 = 0

• b4 = −1/30

• b5 = 0

Theorem 2.1

If k is odd and k ̸= 1, then bk = 0.

9
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Proof. Since the coefficient of t in
∑
k≥0

is −1/2,

t

et − 1
+

1

2
t =

∑
k≥0, k ̸=1

bk
tk

k!

For the left hand side,

t

et − 1
+

1

2
t =

t+
1

2
t(et − 1)

et − 1

=
1

2
t
et + 1

et − 1

=
1

2
t
et/2 + e−t/2

et/2 − e−t/2
,

and we get that the function in the left hand side is an even function. If we
substitute −t into t, we get

∑
k≥0, k ̸=1

bk(−1)k
tk

k!
=

∑
k≥0, k ̸=1

bk
tk

k!

Therefore, for odd k that is not 1, bk = (−1)kbk = −bk and bk = 0. ■

Definition 2.2: Bernoulli Polynomials

Define polynomials B0(x), B1(x), B2(x), · · · by

tetx

et − 1
=

(∑
k≥0

bk
tk

k!

)(∑
j≥0

xj t
j

j!

)
=

∑
k≥0

Bk(x)
tk

k!
.

If we expand the formula, we get(∑
k≥0

bk
tk

k!

)(∑
j≥0

xj t
j

j!

)
= B0(x) +B1(x) +B2(x) + · · ·

Comparing the coefficients of tk, we can get Bk(x). Some Bernoulli polynomials
are:

1. B0(x) = 1

2. B1(x) = x− 1
2

3. B2(x) = x2 − x+ 1
6 .

10
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Claim. Bk(0) = bk.

Proof. In the formula
tetx

et − 1
=

∑
k≥0

Bk(x)
tk

k!
, if we substitute x = 0, then we get

∑
k≥0

Bk(x)
tk

k!
=

tetx

et − 1
=

∑
k≥0

bk
tk

k!
. ■

Claim. Bk(0) = Bk(1) for k ̸= 1.

Proof. Assume k ̸= 1. In the formula
tetx

et − 1
=

∑
k≥0

Bk(x)
tk

k!
, if we substitute

x = 1, then we get
tet

et − 1
=

∑
k≥0

Bk(1)
tk

k!
.

Then,
tet

et − 1
− t

et − 1
=

∑
k≥0

(
Bk(1)−Bk(0)

) tk
k!

= t.

Since
Bk(1)−Bk(0)

k!
= 0 for k ̸= 1, we get Bk(1) = Bk(0) for k ̸= 1. ■

2.2 July 12, 2023

Define T =

(
1 1

0 1

)
, S =

(
0 −1

1 0

)
, R =

(
0 −1

1 1

)
, and S =

(
1 0

1 1

)
. Then

S2 = −I = R3.
Consider the geometric series 1 + r + r2 + · · · + rn. If r ̸= 1, then since

(1− r)(1 + r + r2 + · · ·+ rn) = 1− rn+1, we get

1 + r + r2 + · · · = 1

1− r
− rn+1

1− r
.

Since lim
n→∞

rn+1

1− r
= 0 if 0 ≤ r < 1, 1 + r + r2 + · · · = 1

1− r
if 0 ≤ r < 1.

Definition 2.3: Riemann-Zeta Function

The Riemann-Zeta Function is defined by

ζ(s) =
∑
n≥1

n−s = 1 +
1

2s
+

1

3s
+ · · ·

for s > 1.

11
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Theorem 2.2: Convergence of the Riemann-Zeta Functions

The Riemann-Zeta Function converges for s > 1.

Proof.

ζ(s) = 1 +

(
1

2s
+

1

3s

)
+

(
1

4s
+

1

5s
+

1

6s
+

1

7s

)
+ · · ·

≤ 1 +

(
1

2s
+

1

2s

)
+

(
1

4s
+

1

4s
+

1

4s
+

1

4s

)
+ · · ·

= 1 + 21−s + 41−s + · · ·

= 1 + r + r2 + · · ·

converges if 21−s < 1, hence s > 1. ■

Theorem 2.3: Divergence of the Harmonic Series

When s = 1, the harmonic series

1 +
1

2
+

1

3
+

1

4
+ · · ·

diverges.

Proof.

1 +
1

2
+

1

3
+

1

4
+ · · · ≥ 1 +

1

2
+

(
1

4
+

1

4

)
+

(
1

8
+

1

8
+

1

8
+

1

8

)
+ · · ·

= 1 +
1

2
+

1

2
+

1

2
+ · · ·

diverges. ■

2.3 July 13, 2023
Recall that for k even and k ≥ 4, Sk(z) =

∑
(m,n)∈Z2

(m,n)̸=(0,0)

(mz + n)−k

Theorem 2.4: Convergence of Sk(z)

Sk(z) =
∑

(m,n)∈Z2

(m,n) ̸=(0,0)

(mz + n)−s converges for s > 2.

12
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Proof. Let SN = {(m,n) | max{|m|, |n|} = N}.

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •

Consider the following diagram, where the inner border is S1, and the outer border
is S2. We get that

|SN | = (2N + 1)2 −
(
2(N − 1) + 1

)2
= (2N + 1)2 − (2N − 1)2 = 8N

We know, from Problem Set 2 P12, |mz + n| ≥ C · max{|m|, |n|} = CN , so
|mz + n|−1 ≤ 1/CN . Finally,

Sk(z) =
∑

(m,n)∈Z2

(m,n) ̸=(0,0)

(mz + n)−s

=
∑
N≥1

∑
(m,n)∈SN

(mz + n)−s

≤
∑
N≥1

8N · 1

(CN)s

=
8

Cs

∑
N≥1

N1−s

Because
∑
N≥1

N1−s converges for 1− s < 1, we get s > 2. ■

Now the goal is to find a Fourier expansion for Sk(z) when k is even and k ≥ 4.
That is, we want

Sk(z) =
∑
n≥0

a(n)e2πinz

for some a(i).

13
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Problem Set 2: Bernoulli numbers and Bernoulli poly-
nomials

Problem 1
Show that

Bk(x) =

k∑
j=0

(
k

j

)
xjbk−j .

This formula is sometimes written as Bk(x) = (x+ b)k.

Problem 2
While it is not literally true that Bk(x) is an even or odd function according
as k is even or odd, this assertion is close to being true in at least two different
ways:

(a) Show that Bk(1−x) = (−1)kBk(x), whence the assertion is literally true
for the function f(x) = Bk(x+1/2). (Hint: tet(1−x)/(et − 1) = −te−tx/(e−t −
1).)

(b) Show that the assertion is also true for the function f(x) = Bk(x) +

kxk−1/2.

Problem 3
Prove that B′

k(x) = kBk−1(x), and use this formula together with the fact
that Bk(0) = bk to compute Bk(x) recursively for k ≤ 5. Of course, we already
know that B0(x) = 1, B1(x) = x−1/2, and B2(x) = x2−x+1/6. If you prefer,
use the formula Bk(x) = (x + b)k instead of the formula B′

k(x) = kBk−1(x),
or use some combination of the two approaches.

Problem 4
Let k and n be positive integers. Give two proofs of the identity

1k + 2k + 3k + · · ·+ nk =
Bk+1(n+ 1− bk+1

k + 1

as follows: (i) set x = n+ 1 and x = 0 in the definition

tetx

(et − 1)
=

∑
k≥0

Bk(x)
tk

k!

and take the difference. (ii) Integrate both sides of the definition with respect
to x, say from x = u to x = u+ 1, and sum from u = 1 to u = n.

14
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Problem 5
Show that (1 + 2 + 3 + · · ·+ n)2 = 1 + 23 + 33 + · · ·+ n3.

Problem 6
Let N be a positive integer. Prove the “distribution relation”

Nk−1
N−1∑
j=0

f
(
(x+ j)/N

)
= f(x),

where f = Bk.

Problem 7
This problem can be viewed as a converse to Problem 6. Fix an integer k ≥ 0,
and suppose that f is a polynomial which satisfies the distribution relation in
Problem 6 for every positive integer N . Prove that f = cBk for some constant
c.

Problem 8
Let S and R be as in Problem 6 and 7 of Problem Set 1.

(a) Show that Si = i and that Re2πi/3 = e2πi/3.
(b) Let f be a modular form of weight k for SL2(Z). Show that if k ̸≡ 0

mod 4 then f(i) = 0 and that if k ̸≡ 0 mod 3 then f(e2πi/3) = 0.

Problem 9
Let GL+

2 (R) denote the group of 2 × 2 matrices with real coefficients and
positive determinant. For γ ∈ GL+

2 (R) and z ∈ H, we define

γz =
az + b

cz + d

as before. Check that γz ∈ H, and then verify that the map (γ, z) 7→ γz is
a left action of the group GL+

2 (R) on the set H: In other words, show that
Iz = z and γ(γ′z) = (γγ′)z.

Problem 10
Fix an integer k ≥ 0. Given a complex-valued function f of H and a matrix
γ ∈ GL+

2 (R), define a function f |k γ of H by

(f |k γ)(z) = det(γ)k/2(cz + d)−kf(γz).

Since k is fixed, we can write f |k γ simply as f | γ. Verify that the map (γ, f) 7→
f | γ is a right action of GL+

2 (R) on the set of complex-valued functions on H:
In other words, f | I = f and f | (γγ′) = (f | γ) | γ.
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Problem 11
In class, we used the convergence of the geometric series

∑
n≥0 r

n with r = 21−s

to prove that the series
∑

n≥1 n
−s converges for s > 1. This problem gives an

alternative proof. Write s = 1 + ϵ, so that ϵ > 0.
(a) Show that there is a positive constant c depending on ϵ such that

cx ≤ (1 + x)ϵ − 1

for 0 ≤ x ≤ 1. (Using calculus, one sees that c can be chosen to be the
minimum value of ϵ(1 + x)ϵ−1 on the interval [0, 1].)

(b) By writing n−ϵ − (n + 1)−ϵ = (n + 1)−ϵ
(
(1 + 1/n)ϵ − 1

)
and applying

(a) with x = 1/n, show that n−ϵ − (n+ 1)−ϵ ≥ cn−1(n+ 1)−ϵ. Deduce that

(n+ 1)−s ≤ c−1
(
n−ϵ − (n+ 1)−ϵ

)
and sum over n to complete the proof.

Problem 12
This problem leads to an inequality of the form |mz+n| ≥ CN for z ∈ H and
m, n ∈ Z, where N = max(|m|, |n|) and C is a positive constant depending
on z. Recall that an inequality of this form was used to prove the absolute
convergence of the series

∑
(m,n)̸=(0,0)(mz + n)−k for k > 2.

(a) Prove that for u, u′, v, v′ ∈ R we have

|uu′ + vv′| ≤
√
u2 + v2

√
(u′)2 + (v′)2.

(This is a special case of the Cauchy-Schwarz inequality.)
(b) Observe that n = (mx + n) + (−x/y)(my), and apply (a) with u =

mx+ n, v = my, u′ = 1, and v′ = −x/y, obtaining√
1 + (x/y)2|mz + n| ≥ |n|.

Deduce that |mz + n| ≥ CN with C = min(1/
√
1 + (x/y)2, y).

3 Week 3

3.1 July 17, 2023
Definition 3.1: Fractional Part Function

For any x ∈ R, define the fractional part function {x} by 0 ≤ {x} < 1,
and x = {x}+ n for some n ∈ Z.

16
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Definition 3.2: Bernoulli Functions

Define Bernoulli functions Bk(x) = Bk({x}) where Bk(x) is a Bernoulli
polynomial.

For example,

• B0(x) = 1

• B1(x) = {x} − 1
2

• B2(x) = {x}2 − {x}+ 1
6 .

Remark.
Since Bk(0) = Bk(1) for k ̸= 1, Bk(x) is continuous for k ̸= 1.

3.2 July 19, 2023
We assume that there exists a Fourier series for Bk(x). We now will find the
Fourier series.

Lemma

For n = 0, 1, 2, . . ., ∫ 1

0

e2πinxdx =

{
1 n = 0

0 n ̸= 0.

Proof. If n = 0, then
∫ 1

0

e2πinxdx =

∫ 1

0

1dx = x
∣∣1
0
= 1. If n ̸= 0, then

∫ 1

0

e2πinxdx =
e2πinx

2πin

∣∣∣∣1
0

=
1

2πin
(e2πin − 1) = 0. ■

Suppose f(x) =
∑
m∈Z

a(m)e2πimx.

Question. How do you find a(n) for a given n?

17
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f(x) =
∑
m∈Z

a(m)e2πimx

f(x)e−2πinx =
∑
m∈Z

a(m)e2πimx−2πinx

=
∑
m∈Z

a(m)e2πi(m−n)x

If we integrate both sides from 0 to 1,∫ 1

0

f(x)e−2πinxdx =

∫ 1

0

( ∑
m∈Z

a(m)e2πi(m−n)x
)
dx

=
∑
m∈Z

a(m)

∫ 1

0

e2πi(m−n)xdx

=


∑
m∈Z

a(m) m = n

0 m ̸= n.

So
∫ 1

0
f(x)e−2πinx = a(n). Let’s write this as f̂(n).

Now we will find the Fourier series of Bernoulli functions. We want Bk(x) =∑
B̂k(x)e

2πinx for some B̂k(x). We use the formula that we found above.

B̂k(x) =

∫ 1

0

Bk(x)e
−2πinx except k ̸= 1 and x ∈ Z for k=1

=

∫ 1

0

Bk(x)e
−2πinx.

We use the definition of Bernoulli polynomials. Since

text

et − 1
=

∑
k≥0

Bk(x)
tk

k!,∫ 1

0

text

et − 1
e−2πinxdx =

∑
k≥0

(∫ 1

0

Bk(x)e
−2πinxdx

)
tk

k!

=
∑
k≥0

B̂k(x)
tk

k!.

18
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Therefore,

∑
k≥0

B̂k(x)
tk

k!
=

∫ 1

0

text

et − 1
e−2πinxdx

=
t

et − 1

∫ 1

0

exte−2πinxdx

=
t

et − 1

∫ 1

0

e(t−2πin)xdx

=
t

et − 1
· e

t−2πin − 1

t− 2πin

=
t

et − 1
· et − 1

t− 2πin
=

t

t− 2πin
.

If x = 0, we get

∑
k≥0

B̂k(x)
tk

k!
= B̂0(0) + B̂1(0)t+ B̂2(0)

t2

2
+ · · · = 1,

so B̂k(0) = 0 for k ≥ 1, and B̂0(0) = 1.
If n ̸= 0, we get

t

t− 2πin
= − t/2πin

1− t/2πin

= −
∑
k≥1

(
t

2πin

)k

=
∑
k≥1

−k

(2πin)k
· t

k

k!
.

So if k > 1 and x /∈ Z if k = 1, B̂k(x) = − k!

(2πin)k
for n ̸= 0, and

Bk(x) =
∑
n ̸=0

B̂k(n)e
2πinx

=
∑
n ̸=0

−k!

(2πin)k
e2πinx

= − k!

(2πi)k

∑
n ̸=0

1

nk
e2πinx.

3.3 July 20, 2023
I thank Emmy Huang for helping me with notes for this session.
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If we substitute x = 0 in the formula of Bk(x), since Bk(0) = Bk(0) = bk,

bk = − k!

(2πi)k

∑
n̸=0

1

nk
.

Suppose k ≥ 2, and k even. We have
∑
n ̸=0

1

nk
= 2

∑
n∈N

n−k = 2ζ(k). So

bk = − 2 · k!
(2πi)k

ζ(k), and ζ(k) = − (2πi)kbk
2 · k!

.

Recall that Sk(z) =
∑

(m,n)∈Z2

(m,n)̸=(0,0)

(mz + n)−k. Let this be I + II where

I =
∑
m=0
n ̸=0

(mz + n)−k

=
∑
n ̸=0

n−k

= 2ζ(k) = − (2πi)kbk
k!

and II =
∑
m̸=0
n∈Z

(mz + n)−k

=
∑
m̸=0

(∑
n∈Z

(mz + n)−k
)

=
∑
m≥1

(∑
n∈Z

(mz + n)−k
) (

(−mz − n)k = (mz + n)k
)

If w ∈ H,
∑
n∈Z

(w+n)−k =
(−2πi)k

(k − 1)!

∑
d≥1

dk−1e2πidw, from Problem 11 of Problem

Set 4.
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Substitute w = mz into II gives

II = 2
∑
m≥1

(−2πi)k

(k − 1)!

∑
d≥1

dk−1e2πidmz

= 2
(2πi)k

(k − 1)!

∑
m≥1

∑
d≥1

dk−1e2πidmz (k is even)

= 2
(2πi)k

(k − 1)!

∑
n≥1

(∑
d|n

dk−1
)
e2πinz

=
2(2πi)k

(k − 1)!

∑
n≥1

σk−1(n)e
2πinz

Therefore,

Sk(z) = − (2πi)kbk
k!

+
2(2πi)k

(k − 1)!

∑
n≥1

σk−1(n)e
2πinz.

Definition 3.3: Ek(z)

Ek(z), normalization of Sk(z) is defined as

Ek(z) = − k!

(2πi)kbk
Sk(z)

= 1− 2k

bk

∑
n≥1

σk−1(n)e
2πinz.

If we let q = e2πiz, then

Ek = 1− 2k

bk

∑
n≥1

σk−1(n)q
n.

Example 6

E4 = 1 + 240
∑
n≥1

σ3(n)q
n = 1 + 240(q + 9q2 + 28q3 + · · · )

Example 7

E6 = 1− 504
∑
n≥1

σ5(n)q
n = 1− 504(q + 33q2 + · · · )
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Example 8
Even though it is defined for k ≥ 4, we try k = 2.

E2 = 1− 24
∑
n≥1

σ1(n)q
n.

However, we get a contradiction because E(Sz) ̸= (1z+0)2E(z). Alternatively,
we try defining Sk(z) =

∑
(m,n)∈Z2

(m,n)̸=(0,0)

(mz + n)−2. Then,

S2(γz) =
∑

(m,n)∈Z2

(m,n)̸=(0,0)

1

(mγz + n)2

=
∑

(m,n)∈Z2

(m,n)̸=(0,0)

1(
m
az + b

cz + d
+ n

)2

= (cz + d)2
∑

(m,n)∈Z2

(m,n)̸=(0,0)

1

m′z + n′

where
(
m′ n′) =

(
m n

)(a b

c d

)
. Because this don’t absolutely converge,

S2(γz)− (cz + d)2S2(z) =
12z

2πi
.

Problem Set 3: Diagonal Quadratic Forms

Problem 1
By a positive-definite diagonal quaternary quadratic form over Z we mean a
polynomial of the form f(x1, x2, x3, x4) = ax2

1+bx2
2+cx2

3+dx2
4 with integers a,

b, c, d > 0. We denote this expression [a, b, c, d]. After permuting the variables
xi we may assume that f is normalized in the sense that a ≤ b ≤ c ≤ d.
We say that f is universal if it represents every positive integer, i.e. if for
every positive integer n there is a choice of integers n1, n2, n3, n4 such that
n = f(n1, n2, n3, n4). In 1916 Ramanujan claimed to give a complete list of
universal normalized positive-definite diagonal quaternary quadratic forms:

(a) [1, 1, 1, i] with 1 ≤ i ≤ 7,
(b) [1, 1, 2, i] with 2 ≤ i ≤ 14,
(c) [1, 1, 3, i] with 3 ≤ i ≤ 6,
(d) [1, 2, 2, i] with 2 ≤ i ≤ 7,
(e) [1, 2, 3, i] with 3 ≤ i ≤ 10,
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(f) [1, 2, 4, i] with 4 ≤ i ≤ 14,
(g) [1, 2, 5, i] with 5 ≤ i ≤ 10.

Ramanujan’s list was later proven to be correct except that the form [1, 2, 5, 5]

had to be removed. Why did [1, 2, 5, 5] had to be removed?

Problem 2
The case i = 1 of (a) in Problem 1 is Lagrange’s Four-Squares Theorem: Every
positive integer is a sum of four squares of integers. Let

ϑ(z) =
∑
n∈Z

e2πin
2z = 1 +

∑
n≥1

e2πin
2z.

We often write ϑ(z) = 1 + 2
∑

n≥1 q
n2

with q = e2πiz. Let t be a positive
integer. Explain why

ϑt =
∑
n≥0

rt(n)q
n,

where rt(n) is the number of t-tuples of integers (n1, n2, . . . , nt) ∈ Zt such that
n2
1 + n2

2 + · · ·+ n2
t = n. Thus, to prove the Four-Squares Theorem, it suffices

to show that r4(n) ≥ 1 for all n ≥ 0.

Problem 3
By the end of the program, we hope to have some idea of why modular forms
can be used to prove Jacobi’s formula:

r4(n) = 8
∑

d|4,4∤d
d,

where d runs over all positive divisors of n which are not congruent to 0 mod
4.

(a) Why does this formula prove that r4(n) ≥ 1 (actually r4(n) ≥ 8) for all
n?

(b) Using Jacobi’s formula, show that r(2ν) = 24 for every integer ν ≥ 1.
Then write down the 24 elements of {(n1, n2, n3, n4) ∈ Z4 : n2

1+n2
2+n2

3+n2
4 =

2ν} explicitly. You may also have to distinguish between the cases ν of even
and odd.

Problem 4
Also use Jacobi’s formula to show that r4(mn) = r4(m)r4(n)/8 for coprime
integers m, n ≥ 1.

Problem 5
In class, we deduced the formula ζ(k) = −(2πi)kbk/(2 · k!) (valid for k even
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and k ≥ 2) by taking x = 0 in the Fourier expansion

Bk(x) = − k!

(2πi)k

∑
n ̸=0

e2πinx

nk

(valid for k ≥ 2 or k = 1 and x ∈ Z).
(a) By making different choices of x you can obtain other formulas. For

example, show that
∑

n≥1(−1)n+1n−2 = π2/12.
(b) Alternatively, show that

∑
n≥1(−1)n+1n−s = (1− 21−s)ζ(s) for s > 1,

and thus derive the formula in (a) from the value of ζ(2).

Problem 6
Let N be a positive integer. In Problem 6 of Problem Set 2 we saw that the
“distribution relation”

Nk−1
N−1∑
j=0

f
(
(x+ j)/N

)
= f(x)

was satisfied when f = Bk.
(a) Given n ∈ Z, show that

∑N−1
j=0 e2πnij/N equals 1 or 0 according as N

does or does not divide n. (Hint: Use the formula for 1 + r + r2 + · · ·+ rN−1

with r = e2πin/N .)
(b) Use the Fourier expansion of Bk to prove that Bk satisfies the distribu-

tion relation for k ≥ 2 and also for k = 1, at least if x /∈ Z.

Problem 7
Now give a proof that the distribution relation is satisfied by all k ≥ 1 and all
x ∈ R by reducing to the familiar case f = Bk from Problem 6 of Problem
Set 2. (Hint: Show that the left-hand of the distribution relation is a periodic
function of x with period 1.)

Problem 8
Show that in contrast to Bk, which is not quite an even or odd function (see
Problem 2 of Problem Set 2), the function Bk is even or odd according as k as
even or odd, which the provision that if k = 1 then we must exclude x ∈ Z. In
other words, Bk(−x) = (−1)kBk(x) if k ̸= 1 or x /∈ Z.

Problem 9
This problem is a converse to Problems 6 and 7. Let f be a periodic function
on R with a Fourier expansion f(x) =

∑
n∈Z a(n)e

2πinx, and suppose that
f satisfies the distribution relation as well as the parity relation f(−x) =

(−1)kf(x). Show that f = cBk for some constant c.
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Problem 10
Let F be the set of z ∈ H such that −1/2 ≤ x ≤ 1/2 and |z| ≥ 1. The purpose
of this problem is to prove that for every z ∈ H there exists γ ∈ SL2(Z) such
that γz ∈ F . Write x(γz) and y(γz) for the real and imaginary parts of γz.

(a) Given z = x+ iy ∈ H, show that the set of imaginary parts y(γz) with
γ ∈ SL2(Z) and y(γz) > y is finite. (Hint: Since y(γz) = y/|cz + d|2, it is
enough to show that there are only finitely many pairs of integers (c, d) such
that |cz + d|2 < 1. Now use Problem 12 on Problem Set 2.)

(b) Deduce that the set {y(γz) : γ ∈ Γ} has a maximal element. Then
show that γ ∈ SL2(Z) can be chosen so that y(γz) is maximal and −1/2 ≤
x(γz) ≤ 1/2. (Hint: Replace γz by Tnγz if necessary, where n is an appropriate
integer.)

(c) Show that if γ is chosen as in (b) then |γz| ≥ 1, whence γz ∈ F . (Hint:
If |γz| < 1 show that y(Sγz) > y(γz), contradicting the maximality of y(γz).)

4 Week 4

4.1 July 24, 2023
Definition 4.1: Congruence Subgroup

For N ∈ N, define the congruence subgroup Γ1(N) as the subgroup of all

γ =

(
a b

c d

)
∈ SL2(Z) such that

a ≡ d ≡1 mod N

c ≡0 mod N

so γ ≡
(
1 b

0 1

)
mod N .

Definition 4.2: Γ0(N)

Γ0(N) is the subgroup of all γ =

(
a b

c d

)
∈ SL2(Z) such that c ≡ 0 mod N

so γ ≡
(
a b

0 d

)
mod N .

Remark.
If N = 1, then Γ1(N) = SL2(Z).
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Before we define some new modular forms, we first start with a terminology
that is used.

Definition 4.3: Polynomial Growth

A function f(n) has a polynomial growth if there exists constants c, d > 0

such that

• |f(n)| ≤ c · nd for n > 0

• |f(n)| < nd for sufficiently large n.

Definition 4.4: Modular Form for Γ

Let Γ be Γ1(N) or Γ0(N). A modular form of weight k for Γ is a function
f : H → C such that

1. f(γz) = (cz + d)kf(z) for any γ =

(
a b

c d

)
∈ Γ

2. f is represented by a convergent Fourier series

f(z) =
∑
n≥0

a(n)e2πinz

where a(n) has polynomial growth in n.

Question. In Ek = 1−2k

bk

∑
n≥1

σk−1(n)q
n, does σk−1(n) have polynomial growth?

Solution
σk−1(n) =

∑
d|n

dk−1 ≤ n · nk−1 = nk,

so σk−1(n) has polynomial growth.

Definition 4.5: Vector Space of Modular Forms

Define Mk(N) be the vector space of modular forms or weight k for
Γ1(N).

Example 9
M1(N) is the vector space of modular forms of weight k for SL2(Z).
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Theorem 4.1: New Modular Forms from Old

If f ∈ Mk(N) and g ∈ Ml(N), then fg ∈ Mk+l(N).

Proof. We need to prove that fg satisfies the two properties of modular forms.
For property 1, since f(γz) = (cz+ d)kf(z) and g(γz) = (cz+ d)lg(z), (fg)(γz) =
(cz + d)k+l(fg)(z). For property 2, you can just multiply the Fourier series of f
and g. ■

Corollary

E2
4 = E8.

Proof. E4 ∈ M4(1). Then E2
4 ∈ M8(1). Therefore E2

4 = cE8 for some constant c.
If we compare the constant terms of the expansion,(

1 + 240
∑
n≥1

σ3(n)q
n
)2

= c
(
1 + 480

∑
n≥1

σ7(n)q
n
)
,

so c = 1 and E2
4 = E8. ■

4.2 July 26, 2023
We use a new notation. Let f be a modular form.

Definition 4.6: (f |k γ)(z)

(f |k γ)(z) =
(det γ)k/2

(cz + d)k
f(γz).

Remark.

If γ = aI =

(
a 0

0 a

)
, then f |k γ = f because

f |k γ =
a2k/2

ak
f(z) = f(z).

Remark.
If γ ∈ SL2(Z), then

f |k γ = (cz + d)−kf(γz) = f(z)

by the definition of a modular form.
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Let P = E2, Q = E4, and R = E6. Recall that P = E2 = 1 − 24
∑
n≥1

σ(n)qn

where q = e2πiz and σ = σ1(n)
∑
d|n

d. We have

E2(Sz) = z2E2(z) +
12z

2πi
,

or equivalently, P |2 S = P + ρ where ρ =
12

2πiz
.

Definition 4.7: υ(N)

Define υ(N) ∈ GL+
2 (R) by υ(N) =

(
N 0

0 1

)
where N > 0.

Then, f |k υ(N) =
Nk/2

(0z + 1)k
f(Nz). So if k = 2, we get f |2 υ(N) = Nf(Nz).

We now define D by D = P | υ(2) − P . We will show that D ∈ M2(2), i.e. D

is a modular form of weight 2 for Γ1(2).
We first look at the Fourier expansion.

Proof. By definition,

D = P | υ(2)− P

= 2
(
1− 24

∑
n≥1

σ(n)qne2πin(2z)
)
−
(
1− 24

∑
n≥1

σ(n)qn
)

= 1 + 24
(∑
n≥1

σ(n)qn −
∑
n≥1

2σ(n)q2n
)

= 1 + 24
( ∑

n≥1
n odd

σ(n)qn +
∑
m≥1

σ(2m)q2m −
∑
n≥1

σeven(2n)q
2n
)

(n = 2m)

= 1 + 24
( ∑

n≥1
n odd

σ(n)qn +
∑
n≥1

σodd(2n)q
2n
)

= 1 + 24
∑
n≥1

σodd(n)q
n. ■

We now must show that D |2 γ = D for γ ∈ Γ1(2). Recall that U =

(
1 0

1 1

)
and T = UN generate Γ1(N). So T and U2 generate Γ1(2). Therefore, we can
write

γ = Tn1U2n2Tn3 · · ·TnlU2nl+1 .
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If we show that D |T = D and D |U2 = D, then we can get D | γ = D for all
γ ∈ Γ1(2).

4.3 July 27, 2023
I thank Emmy Huang for helping me with notes for this session.

We begin with defining a new operator.

Definition 4.8: ω(N)

For N ≥ 1, let ω(N) =

(
0 −1

N 0

)
.

Remark.
If N = 1, then ω(1) = S.

Lemma

ω(N) normalizes Γ1(N), i.e. ω(N)Γ1(N)ω(N)−1 = Γ1(N).

Proof. Suppose γ ∈ Γ1(N). Then

ω(N)γω(N)−1 =

(
0 −1

N 0

)(
a b

c d

)(
0 1/N

−1 0

)
=

(
d −C/N

−Nb a

)
.

Since a ≡ d ≡ 1 mod N , and −Nb ≡ 0 mod N , ω(N)Γ1(N)ω(N)−1 ⊆ Γ1(N).
Similar calculation gives ω(N)−1Γ1(N)ω(N) ⊆ Γ1(N), so Γ1(N) ⊆ ω(N)Γ1(N)ω(N)−1.
Therefore, ω(N)Γ1(N)ω(N)−1 = Γ1(N). ■

Corollary

If f ∈ Mk(N), then f |ω(N) ∈ Mk(N).

Proof. We only prove property 1. Given γ =

(
a b

c d

)
∈ Γ1(N),

(
f |ω(N)

)
| γ = f |ω(N)γω(N)−1ω(N)

= f |ω(N). ■

Remark.

Recall U =

(
1 0

1 1

)
and T =

(
1 1

0 1

)
so T−1 =

(
1 −1

0 1

)
. Then

ω(N)T−1ω(N)−1 =

(
0 −1

N 0

)(
1 −1

0 1

)(
0 1/N

−1 0

)
=

(
1 0

N 1

)
= UN .
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We finally prove property 1 for D = P | υ(2)−P . We must show that D | γ = D.
Since Γ1(2) is generated by T and U2, it is enough to show that D |T = D and
D |U2 = D.

For D |T = D, D |T (z) = D(Tz) = D(z + 1) and since e2πi(z+1) = e2πiz ·
e2πi = e2πiz, so any Fourier series is invariant under z 7→ z + 1. Therefore,
D |T (z) = D(z + 1) = D(z).

Problem Set 4: Fourier expansions and identities

Problem 1
For this week’s problem set, it will be useful to have some Bernoulli numbers
handy. In class, we saw that b0 = 1, b1 = −1/2, b2 = 1/6, and bk = 0 for all
odd k ≥ 3. Now show that b4 = −1/30, b6 = 1/42, and b8 = −1/30. For the
record, b10 = 5/66, but that fact won’t be needed in this problem set.

Problem 2
It will also be useful to have a few Fourier expansions of Eisenstein series
available. Let k ≥ 4 be an even integer. Using the formula

Ek = 1− 2k

bk

∑
n≥1

σk−1(n)q
n

where σt(n) =
∑

d|n d
t and q = e2πiz, show: E4 = 1+240(q+9q2+28q3+ · · · ),

E6 = 1− 504(q + 33q2 + 244q3 + · · · ), and E8 = 1 + 480(q + 129q2 + · · · ).

Problem 3
Let Mk(N) be the vector space of modular forms of weight k for Γ1(N). It is
a fact that Mk(1) is one-dimensional for k = 4, 6, 8, and 10. Using this fact,
derive the bizarre identity

σ7(n) = σ3(n) + 120

n−1∑
j=1

σ3(j)σ3(n− j).

Deduce that if p is a prime then p7 = p3 + 120
∑p−1

j=1 σ3(j)σ3(p− j).

Problem 4
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Let L ⊂ R8 be the set of integral linear combinations of the rows of the matrix

A =



2 0 0 0 0 0 0 0

1 −1 0 0 0 0 0 0

0 1 −1 0 0 0 0 0

0 0 1 −1 0 0 0 0

0 0 0 1 −1 0 0 0

0 0 0 0 1 −1 0 0

0 0 0 0 0 1 −1 0

1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2


,

and put f(x) =
∑

l∈L el·lπiz, where l · l is the dot product of l with itself (so if
l = (x1, x2, . . . , x8) then l · l = x2

1 + x2
2 + · · ·+ x2

8).
(a) Prove that l · l ∈ 2Z for all l ∈ L.
(b) Let a(n) be the number of l ∈ L such that l · l = 2n, so that f =∑

n≥0 a(n)q
n. It is a fact that f ∈ M4(1), the space of modular forms of weight

4 for SL2(Z), which is a one-dimensional space. Deduce that a(n) = 240σ3(n)

for n ≥ 1.
(c) Can you exhibit the 240 points l ∈ L such that l · l = 2?

Problem 5
Let L ∈ R8 be as in Problem 4, and let Λ ⊂ R16 be the set consisting of vectors
(x1, x2, . . . , x16) such that both (x1, x2, . . . , x8) ∈ L and (x9, x10, . . . , x16) ∈ L.
(One could also write Λ = L⊕L.) Let b(n) be the number of λ ∈ Λ such that
λ · λ = 2n. Show that b(n) = 480σ7(n) for ≥ 1.

Problem 6
By comparing E3

4 with E2
6 , prove that M12(1), the space of modular forms of

weight 12 for SL2(Z), has dimension at least 2. Actually M12(1) has dimension
exactly 2, and 12 is the smallest k such that Mk(1) has dimension > 1.

Problem 7
Recall that in Problem 10 of Problem Set 2 we introduced the notation f |k γ
for γ ∈ GL+

2 (R).

(a) Show that
d

dz
γz = (det γ)(cz + d)−2.

(b) Let f be a modular form of weight k for SL2(Z), and take γ ∈ SL2(Z).
By differentiating both sides of the equation f(γz) = (cz+ d)kf(z), show that

f ′(γz) = (cz + d)k+2f ′(z) + kc(cz + d)k+1f(γz).

We can write this as f ′ |k+2 γ = f ′+kc(cz+d)−1f(γz). Because of the second
term on the right-hand side, f ′ is not quite a modular form of weight k + 2.
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Problem 8
Put θ = (2πi)−1d/dz, so that θqn = θe2πinz = nq. Also, put P = E2 =

1− 24
∑

n≥1 σ(n)q
n, where σ(n) = σ1(n) =

∑
d|n d, and recall that

P (Sz)− z2P (z) = 12z/(2πi).

Given a modular form f of weight k for SL2(Z), put ∂f = 12θf − kPf . Show
that ∂f is a modular form of weight k + 2 for SL2(Z). (Hint: It suffices to
show that ∂f |k+2 S = ∂f , because the existence of a Fourier expansion for ∂f
gives ∂f |T = ∂f .)

Problem 9
Show that ∂E4 = −4E6. (Hint: It suffices to check that the constant terms in
the Fourier expansions of the two sides agree. Why?)

Problem 10
Show that ∂ satisfies the product rule for derivatives: If f and g are modular
forms for SL2(Z) of some weights k and l respectively then ∂(fg) = (∂f)g +

f(∂g).

Problem 11
The purpose of this problem is to prove the identity

∑
n∈Z

(w + n)−k =
(−2πi)k

(k − 1)!

∑
d≥1

dk−1e2πidw

for w ∈ H and k ≥ 2. Recall that the identity above is used to derive the
Fourier expansion of

∑
(m,n)̸=(0,0)(mz + n)−k for k ≥ 4 and even.

(a) Show that the identity follows from differentiating both sides of the
identity

−πi+
∑
n∈Z

(w + n)−1 = (−2πi)
∑
d≥1

e2πidw

K − 1 times. (On the left-hand side of the identity in (a) the terms (w+ n)−1

and (w − n)−1 have to be grouped together to ensure absolute convergence.)
Thus, after adding −w−1 to both sides of the identity in (a) we see that is
suffices to prove that

−πi+
∑
n ̸=0

(w + n)−1 = −2πi(
1

2πiw
+
∑
d≥1

e2πidw).

(b) By the “principle of analytic continuation” (a black box, unfortunately)
it now suffices to prove that the two sides of the formula above have the same
Taylor series expansion at w = 0. Express the Taylor series on the left in terms
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of values of ζ(s) and hence in terms of Bernoulli numbers, and express the
Taylor series on the right in terms of the generating function of the Bernoulli
numbers.

5 Week 5

5.1 July 31, 2023
To prove D |U2 = D, we first show that D |ω(2) = −D. How do we prove
D |ω(2) = −D? To prove this, write

D |ω(2) = P | υ(2)ω(2)− P |ω(2)

= P |S(2I)− P |Sυ(2)

= (P + ρ)− (P + ρ) | υ(2) (P |S = P + ρ, and ignore 2I)

= (P + ρ)−
(
(P | υ(2) + ρ | υ(2)

)
= (P + ρ)−

(
P | υ(2) + ρ

)
= P − P | υ(2) = −D.

Question. Why is ρ | υ(2) = ρ?

For any f ,

f

∣∣∣∣
k

(
r 0

0 1

)
= rk/2f(z)

So let k = 2, and we get

f

∣∣∣∣
2

(
r 0

0 1

)
= rf(rz).

Since ρ(z) =
12

2πiz
,

ρ | υ(2) = 2 · 12

2πi · 2z
=

12

2πiz
= ρ.

Claim. If γ ∈ Γ1(rN), then υ(r)γυ(r)−1 ∈ Γ1(N)
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Proof. Suppose γ =

(
a b

c d

)
∈ Γ1(rN). Then

υ(r)γυ(r)−1 =

(
r 0

0 1

)(
a b

c d

)(
1/r 0

01

)

=

(
ra rb

c d

)(
1/r 0

0 1

)

=

(
a rb

c/r d

)
.

Since a, d ≡ 1 mod rN , a, d ≡ mod N . Also, since c ≡ 0 mod rN , c/r ≡ 0

mod N . Therefore, υ(r)γυ(r)−1 ∈ Γ1(N). ■

Claim. If f ∈ Mk(N) then f | υ(r) ∈ Mk(Nr).

Proof. Take γ =

(
a b

c d

)
∈ Γ1(Nr). Then

(
f | υ(r)

)
| γ = f | υ(r)γυ(r)−1υ(r) = f | υ(r)

because υ(r)γυ(r)−1 ∈ Γ1(N), hence f | υ(r) ∈ Mk(Nr). ■

Definition 5.1: The Delta Function

Define ∆ by

∆(z) = e2πiz
∏
n≥1

(1− e2πinz)24 = q
∏
n≥1

(1− qn)24.

Theorem 5.1

∆ ∈ M12(1).

Proof. We start from taking logs from both sides of ∆(z) = e2πiz
∏
n≥1

(1−e2πinz)24.

■

log∆(z) = log e2πiz + 24
∑
n≥1

log(1− qn)

= 2πiz + 24
∑
d≥1

log(1− qd).
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Take
d

dz
of both sides. Then you get

∆′(z)

∆(z)
= 2πi+ 24

∑
d≥1

−e2πidz · 2πid
1− qd

= 2πi

(
1− 24

∑
d≥1

d
qd

1− qd

)

= 2πi

(
1− 24

∑
d≥1

∑
m≥1

d · qmd

) (
r

1− r
=

∑
m≥1

qm
)

= 2πi

(
1− 24

∑
n≥1

(∑
d|n

d
)
qn

)
(Letting n = md)

= 2πiE2 = 2πiP .

5.2 August 2, 2023
We continue the proof of ∆ ∈ M12(1). It suffices to show that ∆ |12 S = ∆.

By using the formula
∆′(z)

∆(z)
= 2πiP and S =

(
0 −1

1 0

)
, we get

(1z + 0)−2∆
′(Sz)

∆(Sz)
=

∆′

∆

∣∣∣∣
2

S = 2πiP |2 S = 2πi(P + ρ)

where ρ =
12

2πiz
.

Since
d

dz
(Sz) =

d

dz

(
− 1

z

)
= z−2,

LHS = z−2∆
′(Sz)

∆(Sz)
=

d
dz∆(Sz)

∆(Sz)
=

f ′(z)

f(z)

where f(z) = ∆(Sz),
and

RHS = 2πiP (z) + 2πiρ(z) =
∆′(z)

∆(z)
+

12

z

Since RHS=LHS,
d
dz∆(Sz)

∆(Sz)
=

∆′(z)

∆(z)
+

12

z

We take the antiderivative of both sides.

log∆(Sz) = log∆(z) + 12 log z + c
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So
∆(Sz) = C∆(z) · z12

where C = ec.
Take z = i. Then, Sz = (0i − 1)/(1i + 0) = i. So the formula becomes

∆(i) = C∆(i). Since ∆(i) ̸= 0 by definition of the delta function, C = 1.

Question. In the definition of the delta function, the term in the infinite product
is smaller than 1. What happens if we multiply infinite terms less than 1? Does
it become 0?

Solution The term goes to 1 as n → ∞, so the infinite product can’t go to 0.
So ∆(Sz) = ∆(z)z12, which is a modular form of weight 12. We will now use ∆

to find the dimension of M2(4). We use D = 1 + 24
∑
n≥1

σodd(n)q
n ∈ M2(2) again.

Claim. If f ∈ Mk(N) and r ≥ 1 then f ∈ Mk(rN).

Proof. Suppose f ∈ Mk(N) and γ ∈ Γ1(rN). Then, f |k γ = f because f ∈
Mk(N). Since γ ∈ Γ1(rN) ⊂ Γ1(N), so f ∈ Mk(rN). ■

With N = 2 and r = 2, we get D ∈ M2(4) (r = 2) because D ∈ M2(2). Recall
that if f ∈ Mk(N), then f | υ(r) ∈ Mk(Nr). Hence D|υ(2) ∈ M2(4).
Also recall that f |k υ(r) = rk/2f(rz). So for k = 2, f |2 υ(2) = 2f(2z), so D ∈
M2(4), and D∗ = 1

2D | υ(2) = D(2z) ∈ M2(4). Therefore, D, D∗ ∈ M2(4). Here,
D∗ = 1 + 24

∑
σodd(n)q

2n.

5.3 August 3, 2023
I thank Diana Harambas for helping me with notes for this session.

We know D, D∗ ∈ M2(4) where D = 1+24
∑
n≥1

σodd(n)q
n and D = 1+24

∑
n≥1

σodd(n)q
2n.

Thus

D = 1 + 24q + 24q2 + · · ·

D∗ = 1 + 0q + 24q2 + · · ·

So neither D not D∗ is a scalar multiple of the other, so these two are linear
independent. Since dimM2(4) = 2, D and D∗ are a basis for M2(4). Use the
notation D∗ = 1 + 24

∑
σodd(n/2)q

n, where σodd(n/2) = 0 when n is odd. Now
consider

Θ(z) =
∑
n≥1

r4(n)q
n
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where r4(n) = |{(n1, n2, n3, n4) ∈ Z4 |n2
1 + n2

2 + n2
3 + n2

4 = n}|. Then, Θ ∈ M2(4).
Since D and D∗ are basis of M2(4), Θ can be expressed as

Θ = a(1 + 24q + 24q2 + · · · ) + b(1 + 0q + 24q2 + · · · ) = 1 + 8q + 24q2 + · · · .

Thus, since 1 = a+ b and 8 = 24a, we get a =
1

3
and b =

2

3
. So, for n ≥ 1

r4(n) =
1

3
· 24σodd(n) +

2

3
· 24σodd(n/2)

= 8
(
σodd(n) + 2σodd(n/2)

)
= 8

( ∑
d|n

d≡±1(4)

d+
∑
d|n

d≡2(4)

d
)

= 8
( ∑

d|n
d̸≡0(4)

d
)
,

so we get Jacobi’s formula.

Theorem 5.2: Jacobi’s Formula

For n ≥ 1, r4(n) = 8
(∑

d|n
4∤d

d
)
.

If k is even, then Mk(4) = Mk

(
Γ1(4)

)
= Mk

(
Γ0(4)

)
. Recall that Γ1(2) = Γ0(2).

Lemma

Mk

(
Γ1(4)

)
= Mk

(
Γ0(4)

)
.

Proof. We prove two parts: Mk

(
Γ1(4)

)
⊆ Mk

(
Γ0(4)

)
and Mk

(
Γ0(4)

)
⊆ Mk

(
Γ1(4)

)
.

We certainly have the first part, so we prove the second part. Suppose f ∈
Mk

(
Γ1(N)

)
and γ ∈ Γ0(4). We want to show that f |k γ = f . We divide into

two cases.
First case: If a, d ≡ 1 (mod 4), γ ∈ Γ1(4), so f | γ = f .
Second case: If a, d ̸≡ 1 (mod 4), then a, d ≡ −1 (mod 4). Thus

f | γ = f | γ(−I)(−I)

= f | (γ(−I)) | (−I)

= f | (−I) = f . ■
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Problem Set 5: The Delta Function

Problem 1
Recall from Problem 6 on Problem Set 4 that the space of modular forms of
weight 12 for SL2(Z) has dimension 2. Deduce that E3

4 − E2
6 = 1728∆.

Problem 2
This problem involves both some historical background and also a personal
note. The historical background is that Hardy once remarked to Ramanujan
that 1729 seemed like a boring number, and Ramanujan replied that it wasn’t
boring at all: It is the smallest positive integer that could be written as a sum
of two cubes in two different ways (here “different” means “genuinely different,”
i.e. not achieved just by switching the order of the summands). The personal
note is that once while giving a lecture I carelessly claimed that 1729 is a prime.
Somebody in the audience corrected me right away and also pointed out that
my integer which can be written as a sum of two cubes in two different ways
is not prime.

(a) Factor 1729.
(b) Write 1729 as a sum of two cubes in two different ways.
(c) Prove that if n > 0 can be written as a sum of two cubes in two different

ways when n is not prime.

Problem 3
When ∆ is written as a Fourier series rather than as a product, the Fourier
coefficients are usually denoted τ(n), so that ∆ =

∑
n≥1 τ(n)q

n. Prove the
famous Ramanujan congruence τ(n) ≡ σ11(n) mod 691 for all n ≥ 1.

Problem 4
The formula P |S = P +ρ for P = E2 and ρ(z) = 12/(2πiz) can be generalized
as follows: (P | γ)(z) = P (z) + 12c/

(
2πi(cz + d)

)
for arbitrary γ ∈ SL2(Z).

Deduce this formula from the relations ∆(γz) = (cz + d)12∆(z) and ∆′/∆ =

2πiP by logarithmic differentiation.

Problem 5
This problem leads to a generalization of the modular form D. For an integer
N > 1 let σ(N)(n) be the sum of the positive divisors of n which are relatively
prime to N , and put DN = −

∏
p|N (1− p) + 24

∑
n≥1 σ

(N)(n)qn. So D2 = D.
Also DN = DM , where M is the largest squarefree integer dividing N .

(a) Define µ(n) to be 0 or (−1)t according as n is divisible by the square
of a prime of n = p1p2 · · · pt with distinct primes p1, p2, . . ., pt. Prove that∑

r|n µ(r) is 0 or 1 according as n > 1 or n = 1.
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(b) Show that DN = −
∑

r|N µ(r)P | υ(r), where υ(r) differs from the iden-
tity matrix only in the upper left-hand corner, where 1 is replaced by r.

(c) Deduce that DN is a modular form of weight 2 for Γ0(N).

Problem 6
Define a twelfth root of ∆ by ∆1/12(z) = e2πiz/12

∏
n≥1(1− e2πinz)2.

(a) Show that ∆1/12 |1 γ = e2πiω(γ)/12∆1/12 for γ ∈ SL2(Z), where ω is a
function from SL2(Z) to the integers mod 12 which satisfies ω(γδ) = ω(γ) +

ω(δ).
(b) Show that log∆(−1/z) = 12 log(z/i) + log∆(z).
(c) Prove that ω(S) = −3 and ω(T ) = 1, and deduce that ω coincides with

the map

ω(γ) = (1− c2)
(
db+ 3d(c− 1) + c+ 3

)
+ c(d+ a− 3) mod 12.

in Problem 10 of Problem Set 1.
(d) Show that ω(γ) = 0 for γ ∈ Γ(12), where Γ(N) is the subgroup of

SL2(Z) consisting of matrices which are congruent to the identity matrix mod-
ulo N .

Problem 7
Put f(z) = q

∏
n≥1(1 − qn)2(1 − q11n)2, where q = e2πiz as usual. Show

that f is a modular form or weight 2 for Γ0(11). By the way, if we write
f(z) =

∑
n≥1 a(n)q

n then for all primes p ̸= 11 the quantity p − a(p) is the
number of solutions (x, y) of the congruence

y2 + y ≡ x3 − x2 − 10x− 20 (mod p).

For example, if p = 2 then there are four solutions, namely (0, 0), (0, 1), (1, 0),
and (1, 1), and since a(2) = −2, we do have 2− a(2) = 4.

Problem 8
Let p be an odd prime. Show that any homomorphism Γ1(p) → {±1} is trivial.

Problem 9
Put f(z) = q

∏
n≥1(1− qn)(1− q23n), where q = e2πiz as usual. Show that f is

a modular form of weight 1 for Γ1(23). (Hint: First prove that f2 is a modular
form of weight 2 for Γ0(23).) By the way, if we write f(z) =

∑
n≥1 a(n)q

n then
for all primes p ̸= 23 we have

a(p) =


0 if − 23 is not a square mod p,
2 if p = x2 + xy + 6y2 has a solution with x,y ∈ Z
−1 otherwise.
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The first and second cases are mutually exclusive, although this may not be
obvious.

Problem 10
It was mentioned in the first week of class that a modular form of weight 0
is constant. This fact can actually be deduced from Problem 10 of Problem
Set 3 as follows. Let F be as in that problem, and f =

∑
n≥0 a(n)e

2πinz be
a modular form of weight 0 for SL2(Z). After subtracting of the constant
function a(0) from f , we may assume that a(0) = 0. The deduction requires
two black boxes, unfortunately.

(a) One black box is the fact that a continuous real-valued function on the
set Fy0 = {z ∈ F : y ≤ y0} (or on any “closed and bounded” subset of C)
attains a maximum value. So |f(z)| attains a maximum value on Fy0 . Using
the fact that limy→∞ |f(z)| = a(0) = 0, deduce that |f(z)| attains a maximum
value on all of F .

(b) Now use Problem 10 of Problem Set 3 to show that f attains a maximum
value on all of H, and in fact that the maximum value of |f(z)| on F is
the maximum value |f(z)| on H. Drawing the desired conclusion (that f is
constant) requires a second black box: If f is a holomorphic function (as our
f most certainly is) such that |f(z)| attains a maximum value on a connected
open set like H then f is constant. So a modular form of weight 0 for SL2(Z)
is constant.

6 Week 6

6.1 August 7, 2023
Our goal is to prove

dimMk

(
Γ0(N)

)
≤ 1 +

⌊
kt

12

⌋
where t = [SL2(Z) : Γ0(N)] Note: If N = 4, k = 2, then t = 6. So we get

dimM2

(
Γ0(4)

)
≤ 2

But D, D∗ are linear independent and in M2

(
Γ0(4)

)
, So dimM2

(
Γ0(4)

)
= 2.

Definition 6.1: Right Coset

Let G be a group, and H be a subgroup of G. A right coset of H in G is a
set of the form

Hg = {hg : h ∈ H}

where g is any element from G.
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Theorem 6.1

For g, g′ ∈ G, if Hg ∩Hg′ ̸= ∅ if and only if Hg = Hg′.

Proof.

Hg ∩Hg′ ⇔ hg = h′g′ for some h, h′ ∈ H

⇔ g = (h−1h′)g′

⇒ Hg = H(h−1h′)g′ = Hg′. ■

Corollary

G=
⋃
j

Hgj (disjoint union)

Definition 6.2: Index

If G =

t⋃
j

Hgj (disjoint union), then we call

t = [G : H]

the index of H in G.

Remark.
We say that H has finite index in G if G =

⋃
j

Hgj involves only finitely

many j, i.e. if t is not infinite.

Remark.
Suppose we have G =

⋃
j

Hgj . For any g ∈ G, Gg =
⋃
j

H(gjg) = G.

Then, we define this some other coset Hgjg by Hgσ(j) where σ is a permutation
of the set {1, 2, . . . , t}. So gjg = hgσ(j) for some h ∈ H.

We now go back to SL2(Z) and Γ0(N). Note that

[SL2(Z) : Γ0(N)] = N
∏
p|N

(
1 +

1

p

)

is finite. Now, if f ∈ Mk

(
Γ0(N)

)
, then

F =

t∏
j=1

f |k δj ∈ Mkt
(
SL2(Z)

)
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where SL2(Z) =
t⋃

j=1

Γ0(N)δj (disjoint union).

Lemma

F |kt δ = F .

Proof. Let δ =

(
a b

c d

)
∈ SL2(Z). Observe that (F |kt δ)(z) = (cz + d)−ktF (δz).

So,

F |kt δ = (cz + d)−ktF (δz)

= (cz + d)−kt
t∏

j=1

(f |k δj)(δz)

=

t∏
j=1

(cz + d)−k(f |k δj)(δz)

=

t∏
j=1

(f |k δj) |k δ

=

t∏
j=1

f |k δjδ

=

t∏
j=1

f |k γjδσ(j)

where γj ∈ Γ1(N). Therefore,

F |kt δ =

t∏
j=1

f | γjδσ(j)

=

t∏
j=1

(f |k δj) |k δσ(j)

=

t∏
j=1

f |k δσ(j) = F . ■

6.2 August 9, 2023
I thank Vincent Tran for helping me with notes for this session.

Our goal is to prove dimMk

(
Γ0(N)

)
≤ 1 + ⌊ kt

12⌋ where t = [SL2(Z : Γ0(N)].
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Let ν = ⌊ kt
12⌋. Define a linear map

T : Mk

(
Γ0(N)

)
→ Cν+1.

by T (f) = T
(∑
n≥0

af (n)q
n
)
=

(
af (0), af (1), . . . , af (ν)

)
.

We now want to show that T is injective. Thus we want to show that if T (g) =
T (h) for some g, h ∈ Mk

(
Γ0(N)

)
, then g = h. Thus f = g−h ̸= 0. But T (f) = 0,

which is a contradiction. Now write SL2(Z) as a disjoint union
t⋃

j=1

Γ0(N)fj . Then

F = t
j=1fj ∈ Mkt

(
SL2(Z)

)
. So F = 0 + 0ω + 0q2 + 0q3 + · · · + qν+1 + · · · and

F 12 = 0+0q+ · · ·+0q(ν+1)12−1 + q(ν+1)12. Since ∆ = q
∏
n≥1

= 0+ (something)q+

(something)q2, ∆kt = 0+ 0q + 0q2 + · · ·+ (something)qkt + · · · ∈ M12kt

(
SL2(Z)

)
.

As ∆ is never zero on the upper half plane, we can consider F 12/∆kt.

Claim. F 12/∆kt is 0.

We then want to find the weight of F 12

∆kt (γz) =
(cz+d)12ktF (z)12

(cz+d)12kt∆(z)kt . This is weight
0 after cancelling. Since modular forms of weight 0 are constants, F 12/∆kt is a
constant. Next, we’ll show that the constant is 0. This is a contradiction since if

F = 0, then
t∏

j=1

f |k fj = 0, so f = 0, which is a problem since f is not 0. So T is

injective and dimMk

(
Γ0(N)

)
≤ 1+ ν. The function f doesn’t explode as y → ∞,

but if there are negative powers there’d be an explosion. Thus we still must check
Fourier expansion.

F 12 = Cq(ν+1)12 + · · ·

∆kt = Cqkt.

where C is locally some constant. So

F 12

∆kt
= Cq(ν+1)12−kt + · · · .

In order to ensure that there is no explosion, (ν + 1)12 − kt should be greater
or equal than 0 (i.e. the second property of modular forms). If there is equality,
then we have that it is a constant. But if we show that (ν + 1)12 − kt > 0,

then lim
y→∞

F 12

∆kt
(iy) = 0, so the constant is 0. Therefore, our goal is to show that

(ν + 1)12 ≥ kt.
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6.3 August 10, 2023
I thank Eamon Zhang for helping me with notes for this session.

Definition 6.3: ϑ(t)

Define ϑ(t) as

ϑ(t) =
∑
n∈Z

e−πn2t = 1 + 2
∑
n≥1

e−πn2t for t > 0

Observe that ϑ(t)4 =
∑

n≥0 r4(n)e
−πnt =

∑
n≥0 r4(n)e

(2πin)(it/2). Then ϑ(y)4 =

Θ

(
iy

2

)
for y > 0.

Claim. ϑ( 1y
√
yϑ(y).

By principle of analytic cont, Θ |ω(4) = −Θ, Θ |ω(4)−1 = −Θ. Now recall
that

Θ |U4 = Θ |ω(4) |T−4 |ω(4)−1

= −Θ |T−4 |ω(4)−1

= −Θ |ω(4)−1 = Θ.

So Θ |U4 = Θ and also Θ |T = Θ. Since T and U4 generate Γ1(4) and M2(4) =

M2

(
Γ1(4)

)
= M2

(
Γ0(4)

)
, we get Θ ∈ M2Γ0(4).

Question. Why do we have ϑ(1/t) =
√
tϑ(t) for t > 0?

We use Fourier analysis for this. Recall that ϑ(t) = −
∑

n∈Z e
−πn2t. For

functions f : R → C of rapid decay, we define the Fourier transform of f by

f̂(x) =

∫ ∞

0

f(y)e−2πixy dy.

Then we have some properties.

Theorem 6.2: Poisson Summation Formula∑
n∈Z

f(n) =
∑
n∈Z

ˆf(n)
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Lemma

f f(x) = e−πx2

then f̂ = f .

Now define fa(x) = f(ax) where a > 0. Then, f̂a(x) = 1
a f̂(x/a).

Proof.

f̂a(x) =

∫ ∞

−∞
fa(y)e

−2πixy dy

=

∫ ∞

−∞
f(ay)e−2πixy dy

=
1

a

∫ ∞

−∞
f(ay)e−2πix

a
(ay)(ady).

Let u = ay. Then

1

a

∫ ∞

−∞
f(ay)e−2πix

a
(ay)(ady) =

1

a

∫ ∞

−∞
f(u)e−2πix

a
(u) du

=
1

a
f̂

(
x

a

)
■

We now apply with f(x) = e−pix2

. We get

f̂a(x) =
1

a
f̂

(
x

a

)
=

1

a
eπ(x/a)

2

=
1

a
e−πx2/a2

.

So by the theorem with fa above, we get∑
n∈Z

fa(n) =
∑
n∈Z

f(an)

=
∑
n∈Z

e−pin2a2

=
∑
n∈Z

f̂a(n)

=
1

a

∑
n∈Z

e−πn2/a2

.

Putting y = a2 > 0, we get the desired result.
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Problem Set 6: Farewell!

Problem 1
Recall that σ(n) is σ1(n), the sum of the divisors of n. Put P = 1 −
24

∑
n≥1 σ(n)q and ρ(z) = 12/(2πiz). The purpose of this problem and the

two that follow is to prove the identity

P |S = P + ρ (1)

where | = |2. Put

g(z) = 2ζ(2) +
∑
m ̸=0

(
∑
n∈Z

(mz + n)−2). (2)

(The order of summation is important here, because the sum over (m,n) is not
absolutely convergent.) Since g = (π2/3)P , the identity P |S = P +ρ amounts
to

z−2g(−1/z) = g(z)− (2πi)/z. (3)

Put am,n = (mz + n)−2 and show that (3) is equivalent to the relation∑
n∈Z

(
∑
m̸=0

am,n)−
∑
m̸=0

(
∑
n∈Z

am,n) = −(2πi)/z. (4)

(Hint: Replace z by −1/z in (2) and multiply both sides by z−2. Then detach
the term n = 0 from the sum over n and add the term m = 0 to the sum over
m.

Problem 2
This problem is a continuation of Problem 1. Put

bm,n = (mz + n)−1(mz + n+ 1)−1 = (mz + n)−1 − (mz + n+ 1)−1. (5)

(a) Show that the double series
∑

n∈Z(
∑

m̸=0 am,n − bm,n) converges abso-
lutely. (Hint: Show that |am,n − bm,n| ≤ |mz + n|−3 + |mz + n+ 1|−3.)

(b) It follows from (a) that∑
n∈Z

(
∑
m ̸=0

am,n − bm,n) =
∑
m̸=0

(
∑
n∈Z

am,n − bm,n),

whence (4) is equivalent to
∑

n∈Z(
∑

m ̸=0 bm,n) −
∑

m ̸=0(
∑

n∈Z bm,n) =

−(2πi)/z. Show that
∑

m ̸=0(
∑

n∈Z bm,n) = 0, and deduce that (4) is equivalent
to ∑

n∈Z
(
∑
m ̸=0

bm,n) = −(2πi)/z. (6)

The next problem outlines a proof of (6) and hence completes the proof for
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(1).

Problem 3
In this problem we use the notation

cot(z) = i
e2iz + 1

e2iz − 1
= i

1 + e−2iz

1− e−2iz
(7)

for z ∈ C \ (2πi)Z. Our aim is to prove (6).
(a) Put cm,n = (m+ n/z)−1 + (−m+ n/z)−1. Show that (6) is equivalent

to ∑
n∈Z

(
∑
m≥1

cm,n − cm,n+1) = −2πi (8)

(Hint:
∑

n∈Z(
∑

m̸=0 bm,n) =
∑

n∈Z
(∑

m≥1(bm,n + b−m,n)
)
. Why?)

(b) Prove the identity
∑

m≥1(m+w)−1 + (−m+w)−1 = π cot(πw)−w−1

for w ∈ C \ Z.
(c) By applying (b) with w = n/z and w = (n + 1)/z show that (8) is

equivalent to
lim
n→∞

(d−n − dn) = −2πi, (9)

where dn = π cot(πn/z)− z/n.
(d) Show that limn→∞ d±n = ±πi and conclude that (9) does hold. (Hint:

If z ∈ H then −1/z ∈ H and therefore the real part of 2πin/z is negative or
positive according as n is negative or positive. Now use the two expressions
for cot(z) in equation (7).)

Problem 4
The point of this problem is to show that [SL2(Z) : Γ0(4)] = 6, a fact that
was needed in our derivation of Jacobi’s formula. Fix a prime p.

(a) Show that a vector (c, d) ∈ Z2 is the bottom row of a matrix in SL2(Z)
if and only if gcd(c, d) = 1.

(b) Given δ, δ′ ∈ SL2(Z) with entries a, b, c, d and a′, b′, c′, d′ respectively,
show that Γ0(p

n)δ = Γ0(p
n)δ′ if and only if cd′ − c′d ≡ 0 mod pn.

(c) With notation as in (b), deduce that Γ0(p
n)δ = Γ0(p

n)δ′ if and only if
there is an integer u prime to p such that (c′, d′) = (uc, ud).

(d) Deduce that

[SL2(Z) : Γ0(p
n)] =

p2n − p2(n−1)

(p− 1)pn−1
= pn(1 + 1/p).

Then take p = n = 2 to get the desired value for [SL2(Z) : Γ0(4)].
(e) Although we did not need explicit right coset representatives for Γ0(4)

in SL2(Z) for anything we did, show that (c) gives an effective method for
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choosing a set of coset representatives. For example, show that(
1 0

0 1

)
,
(
0 −1

1 0

)
,
(
1 0

1 1

)
,(

0 −1

1 −1

)
,
(
1 1

1 2

)
,
(
−1 −1

2 1

)
is one possible choice.

Problem 5
By using Problem 4 together with the Chinese Remainder Theorem, prove the
more general formula

[SL2(Z) : Γ0(N)] = N
∏
p|N

(1 + 1/p)

for any positive integer N .

Problem 6
This problem gives a proof that the only modular form of weight 2 for SL2(Z)
is 0.

(a) Observe that [SL2(Z) : Γ0(2)] = 3, and deduce that M2(2) has dimen-
sion 1.

(b) Show that the modular form D = 1+
∑

n≥1 σodd(n)q
n is not invariant

under S, and deduce that M2(1) = {0}.

7 Supplementary Problems

A function f is called holomorphic at z0 if limz→z0
f(z)−f(z0)

z−z0
exists. A meromor-

phic function is a function that is holomorphic except at a set of isolated points
that are the zeros of 1/f , and they are called the poles of f . The order of a
pole of f at z0 is the smallest integer n such that (z − z0)

nf(z) is holomorphic
at z0. If f has a zero at z0, then ordz0(f) is defined as ordz0(1/f). If f has nei-
ther zero nor a pole, then the order equals zero. The order of a modular form f

at i∞ is the smallest n such that an (nth Fourier coefficient) is nonzero. Define
F = {z ∈ H : − 1

2 ≤ x < 1
2 and |z| > 1} ∪ {z ∈ H : |z| = 1 and − 1

2 ≤ x ≤ 0},
where x is the real part of z. Let f be a modular form of weight k, then

ordi∞(f) +
1

2
ordi(f) +

1

3
orde2πi/3(f) +

∑
z0∈F

z0 ̸=i,e2πi/3

ordz0(f) =
k

12
.

This is called the Valence formula, which we will use in the next few exercises.
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Problem 1
A modular form is a cusp form if the constant Fourier coefficient in its Fourier
series expansion is zero. Prove ∆(z) =

E3
4−E2

6

1728 is a cusp form of weight 12 that
is nowhere vanishing on the upper half-plane.

Problem 2
Use the valence formula to determine the dimension of Mk(SL2(Z)), denoted
Mk, for k = 0, 2, 4, 6, 8, 10. Moreover, determine the dimension of Sk (the
space of cusp forms of weight k) in terms of the dimension of Mk. Use the ∆

modular form to prove Sk
∼= Mk−12.

Problem 3
Use the previous problem to prove dimmk ≤ [ k

12 ] for k ≡ 2 mod 12 and is
bounded by [ k

12 ] + 1 otherwise. Deduce a similar formula for dimSk. Then
determine a basis in terms of Ea

4E
b
6 for a, b satisfying certain simple property.

Lastly, check that M = ⊕Mk (direct sum) is a ring and is isomorphic to C[x, y].

Problem 4
Prove the Valence Formula. A simple closed curve is a curve that does not
intersect itself and start and end at the same point. If a function is holomorphic
on a disk containing a simple closed piecewise smooth curve C, then the integral
around C is zero. You may also use the theorem that if f is meromorphic inside
and on a simple closed piecewise-smooth curve C and has no zeros or poles on
C, then the integral of f ′(z)/f(z) around C equals 2πi times number of zeros
minus number of poles, counting multiplicity.

Problem 5
Use the integral representation of the Fourier coefficient to prove that there
exists some constant C > 0 such that for the nth Fourier coefficient an of a
cusp form f , |an| ≤ Cnk/2, where C only depends on f .

Problem 6
Let q = e2πiz, and consider the function f(z) = q

∏
n≥1(1 − qn)24. You may

assume the following facts:

1. f has a Fourier series representation.

2. The second Eisenstein series satisfies E2(z) = 1− 24
∑n

i=1 σ1(n)q
n.

3. For all z in the upper half-plane, E2(− 1
z ) = z2E2(z) +

6z
πi .

Prove f = ∆. The Fourier coefficients of ∆ are called the Ramanujan tau
function, and satisfies many amazing identities (e.g. τ(n) ≡ σ11(n) mod 691).
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