PROMYS - Modular Forms

Joshua Im

July 3 - August 10, 2023

Modular Forms is a course that I took in summer 2023, in the summer pro-
gram PROMYS (Program in Mathematics for Young Scientists) by Prof. David
Rohrlich. Sections are divided by each week, and subsections are divided by each
day of lecture. Problem sets were given every Monday, but listed in the last sub-
section of a section. I thank Diana Harambas, Emmy Huang, Eamon Zhang, and
Vincent Tran for helping me with taking notes.

Week 1

11 July 3, 2023

Definition 1.1: SLy(Z)

The modular group SLs(Z) is the set of 2 x 2 matrices with integer entries
such that their determinant is 1, under matrix multiplication. In other words,

if is the set of matrices v = <Z Z) such that det(y) = ad — bc = 1.

Example 1

v = (; 157> € SLy(Z) since det(y) =7-5—-17-2=1.

Definition 1.2: Matrix Multiplication

a b , a v . e s
Ify = e d and v = o d) then the matrix multiplication is
defined by

, fa b\ _, (d VN _ (ad +0bc ab +bd
=\e a)7 T\¢ @) " \ed +dd o +dd.
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Remark. (Matrix multiplication is not commutative)

. (1 1 (0 -1
Con81derT<0 _1> andS(1 O).Then

1 -1 0 -1
TS_(I O)andST—(l 1),

so TS # ST.

Theorem 1.1: SLy(Z) is a group

SLo(Z), the modular group has the following properties:

e Associativity: For any v,v',v", (v )" =v(y'v")

o Identity element: There exist an identity element I = ((1) (1)) €

SLy(Z) such that
=1Iy=n

a b . .
e Inverse element: For any v = <c d>’ there exist an inverse element

y = ( d _ab> € SLy(Z) such that
VW =~y=1I
Definition 1.3: Fractional Linear Transformation

Define H = {z+yi |y > 0}. Then the group SLs(Z) acts on H by fractional

. . L b
linear transformations. That is, given v = (Z d)’ and z € H,

az+b
cz+d

Vz =

I Claim. 3(7z) > 0.
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Proof. Let v = <Z Z) € SLy(Z), and z = x + yi € H. Then

az+b az+b cz+d

= cz4+d cz+d cz+d
_ (az+b)(cz +d)
lez + d|?
_ ((az +b) +i(ay)) ((cx + d) —i(cy))
|z + d|? '
(ad — be)y Yy
Hence $(yz) = o+ dP? = o2+ dP? > 0. [

1.2 July 5, 2023

1 1 0 -1
DeﬁneT(O 1) andS(1 O)'

Example 2 (Action on 7" and S on H)

1
Tz:z+ =z+1
1
0z -1 1 zZ
S = = - = ——
Tlato 2] |2]?

In H, Tz has the effect of shifting 1 unit to the right. Also, the three points
(0,0), Sz, and —Z is collinear.

Theorem 1.2: Euler’s Formula

e = cosf + isinf.

Proof. In you use the Taylor series,

2 3
v _ T
e 71+x+2!+3!+

. 22 gt 6
cosx = _E—FI_E—F“-
o 3 25 2T
Slnx—l‘—g—‘ra—ﬁ

, 62 63
Then, 6’9:1+i9—§—i§+---:cose—i—isin@.
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Definition 1.4: Modular Form of Weight &

Fix k € Z. A modular form of weight k for SLy(Z) is a function f : H —
C such that

L f(v2) = (c2 + ) f(2)

2. There exists a convergent series representation
flz) = Z a(n)e*™* on H, for some a(1), a(2), --- € C.
n>0

Example 3

Take k = 0, and choose any constant in C. Say 17. Define f(z) = 17 for all z.
Then

1. f(y2) =17 = (cz + d)°f(2)
2. f(z) =17 =73 a(n)e*™™* with a(0) = 17 and a(n) = 0 for n > 0.

Example 4 (Non-example)
Take k = —2, and define f(z) =y. Then

J02) =y(12) = [ = ez + A2/ (2)

This is not an example of a modular form because there is an absolute value
sign.

1.3 July 6, 2023

Example 5
Fix k € Z, k > 4 and even. Consider

fe)= Y (mzen)t

(m,n)#(0,0)

1
- Z (mz +n)k

(m.n)#(0,0)

=YY (m.n) # (0,0)

MEZLnEZ

and assume convergence.

We first verify property 1.
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Proof. Let v = <

‘)
=% ()
1
Z<maz+b+n>k

cz+d
1

m (m(az +b) +n(cz+ d))k

= (cz—l—d)k Z 1

k
(mmy2(0,0) ((ma+nc)z + (mb + nd))

, 1
=(cz+d)* > CPEer

(m,n)#(0,0)

for m’ = ma + nc and n’ = mb 4 nd. Then, we must check that every (m/,n’) €
72\ {(0,0} occurs exactly once. In other words, given (m’,n’), there is a unique
solution (m,n) € Z2\ {(0,0} to

(o) (2 5) = ).

Since SLy(Z) is a group, for any v € SLo(Z), there exists an inverse element v~
Then (m,n) = (m/,n’)y~! satisfies the equation since

(m/ ;0" )y ")y = (m/,n) I = (m/,n). [ |

1

Therefore, property 1 holds. Also, from now on, use the notation

fe)= 3 metn) =50,

(m,n)#(0,0)
I Question. Why did we define Si(z) for only even k?

What happens when k& becomes odd?

I Claim. Sj(z) = 0 when k is odd.

Proof. Let k be odd.

Apply f(yz) = (cz+d)* f(2) withy = —I = < ) Then vz = 7OZ_+10 =z,
and (cz+d)¥ = (02—1)% = —1. Therefore, we get f(z) = —f(2),and f(z) =0. R
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Lemma : Any Modular Form is Periodic

If f(2) is any modular form, then f(z + 1) = f(z).
) . 11 .
Proof. Apply f(vz) = (cz +d)*f(z) with v =T = 0 1) Then, since Tz =

z+1
0z+1

=z+1and (cz+d)* = 1% = 1, we get

e +1) = 15f(2) = £(2). n

To verify property 2, we must show that there is a convergent series represen-

tation '
f(z) = Z a(n)e?™nz,

Problem Set 1: The modular group

Problem 1

Define the product of two 2 x 2 matrices by the formula
a b\ [(d V\ [(ad +bd ab +bd
c d)\c d) \ca'+dd cv+dd )’
(In the problem and the next, we take a, b, c... to be real numbers.)
(a) Verify that for three 2 x 2 matrices v, 4/, 7" we have vy )y" = v('v").
(b) Verify that the operation of matrix multiplication on the set of 2 x 2

matrices has a unique multiplicative identity, namely the matrix I with a =
d=1landb=c=0.

Problem 2

The determinant of a 2 x 2 matrix - is the number dety = ad — be.
(a) Verify that det(yy') = det(vy) det(v').
(b) Show that if dety # 0 then the matrix

;1 d —b
T ad —be (c a)
(with entries d/(ad—bc), —b/(ad—bc), and so on) satisfies vy = 1 and v/ = 1.
Thus 4/ is a multiplicative inverse of v. Often multiplicative is understood, and
we speak simply of an inverse of ~.
(c) Show that an inverse of v, if it exists, is unique, so we can speak of the
inverse of 7, which we henceforth denote y~! rather than ~'.

(d) In (b) we showed that the condition of dety =## 0 is sufficient for v to
have an inverse. Now use (a) to show that this condition is necessary. In other
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words, show that if v has an inverse then det vy # 0.

Problem 3

Henceforth we take a, b, ¢, ... to be integers, and we write SLo(Z) for the set of
2 x 2 matrices with integer coefficients and determinant 1. Show that SLo(Z) is
closed under the operation of matrix multiplication and the operation of taking
inverses, whence this operation makes SLy(Z) into a group: The operation is
associative, there is a multiplicative identity, and every element has an inverse.

Problem 4

Define matrices

1 1 1 0
ro () wiav- (1)

For n € Z and v € SLy(Z), verify that T™y is the matrix obtained from -~y
by adding n times the second row of v to the first row, while U™ is obtained
by adding n times the first row to the second row. (In particular, 7" and U™
differ from T and U only by having an n in the upper righthand corner in the
case of T and in the lower left-hand corner in the case of U.) Explain why
there is a finite sequence of such “row operations” which transforms ~ into the
identity matrix I. (First verify that —I = U?T~*U?T~!.) Deduce that T' and
U generate SLy(Z): In other words, every element in SL2(Z) can be written
as a finite product T™*U™T"3U™ ... with n; € Z.

Problem 5

Illustrate the previous problem by writing the matrix
(7T 5
T=\4 3
explicitly as a finite product of the form T™ U™ T™ U™ ... with n; € Z.

Problem 6
Put

0 -1
5= < R ) |
Verify the identity ST-1S~! = U, and deduce that S and T also generate
SLy(Z).

Problem 7
Put
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Verify that S™'R = T and deduce that R and S are yet another pair of
generators for SLo(Z). It may seem silly to exhibit three different pairs of

generators for SLs(Z), but each has its special properties. For example, show
that S? = R® = —1I.

Problem 8

Given an integer N > 1, we write I'y (V) for the subset of SLy(Z) consisting
of those 7 for which ¢ = 0 and @ = d = 1 modulo N. (Thus if N = 1 then
'y (N) is just SLo(Z) itself.) Show that I';(N) is a subgroup of SLs(Z): in
other words, it is closed under multiplication, it contains I, and it contains the
inverse of each of its elements.

Problem 9

Let N =1, 2, 3, or 4, and define T and U as in Problem 4. Put V = U".
This problem is a generalization of Problem 4: The matrices T' and V' generate
'y (N). To prove this, let T be the subgroup of I'1 (IV) consisting of all finite
products of the form T V™2™V | with n € Z. (Why is this a subgroup?)
We must show that I' = T';(N). Let v denote an arbitrary element of I'y (N).

(a) Show that if @ = 0 or ¢ = 0 then v € T'. (Hint: Observe that if a =0
then N = 1 and if ¢ = 0 then N = 1 or 2 and in addition, v = +T™ for
some n. In these cases, you can simply use Problem 4, including the identity
—I =U?T~'U?T~!, which if N = 1 can be written —I = VT-1VT~1)

(b) Use double induction on |¢| and |a| to show that v € I". For the inductive
step, take ac # 0 and assume that 7/ € T' for all matrices ' € I'1(IN) such
that either |¢/| < |c| or |¢| = |c|] and |a'| < |a|. If |¢| < Nla|/2 show that with
an appropriate choice of sign the inductive hypothesis applies to the matrix
v = T*1y, and if |c| > N|a|/2 show that the same is true with o/ = VF1y.

Problem 10
Define a function w from SLs(Z) to the integers mod 12 by the formula

w)=1—=c*)(db+3dlc—1)+c+3)+c(d+a+3) mod 12.

The purpose of this problem is to prove that w(vd) = w(vy) + w(d).

(a) Show that if ¢ and d are relatively prime integers then ¢® —(ed)?+d? = 1
modulo 3 and modulo 4, hence modulo 12.

(b) Let T be as in Problem 4. Show that w(T) = w(T) + w(y).

(c) Let U be as in Problem 4. Show that 4w(U~y) = 4w(U) + 4w(7). You
may want to consider a division into four cases as follows: (i) a = 0 mod 3,
(ii) ¢ = 0 mod 3, (iii) @ = ¢ mod 3, (iv) @ = —¢ mod 3. Don’t forget that
ad —bc = 1!

(d) Now show that 3w(U+~) = 3w(U) + 3w(y). Once again, a division into
cases may be helpful: (i) a = 0 mod 2, (ii) ¢ = 0 mod 4, (iii) ¢ = 2 mod 4, (iv)
a =cmod 4, and (v) a = —c mod 4.
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(e) Conclude that w(yd) = w(y) + w(d) for all v, § € SLy(Z).

Week 2
2

21 July 10, 2023

Definition 2.1: Bernoulli Numbers

t th
Define the Bernoulli numbers by, by, bs, --- by —— = Z b —.

t _ |
et —1 >0 k!
t2 3
We know the Taylor series for em:1+t+§+§+-~-
5 t thk -
ince —— = —
Ceet—l Wk
k>0
t=(e" -1 r
k>0
t2 3 2t
= o o b+ byt bo— T
<t+2+6+ )<o+1+22+36+ >
bo \ o 1 1 1 3
= — —bo+ =by + =bo |t +---.
b0t+<2>t +<60+21+22> +

Therefore, the coefficients for t* should be all 0 for k& > 2. If you compute some
Bernoulli numbers with comparing the coefficients, you get

e hp=1

o by =—1/2
e by =1/6

e b3 =0

e by =-1/30
e b5 =0
Theorem 2.1

If k is odd and k # 1, then b, = 0.
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Proof. Since the coefficient of ¢ in Z is —1/2,
k>0

t 1 tk
a1ttt Xt
k>0, k#1

For the left hand side,

1
t+ —t(et — 1
o1, e
et—1 2 et —1

1 et +1
= —t——
2 et —1

1 6t/2+67t/2

T 9 et/2 _ o—t/27

and we get that the function in the left hand side is an even function. If we
substitute —t into ¢, we get

Pt tk
Z b (—1) i Z bkﬁ
k>0, k#1 k>0, k#£1

Therefore, for odd k that is not 1, by, = (—1)*b, = —by and by = 0. [ |

Definition 2.2: Bernoulli Polynomials

Define polynomials By(x), Bi(z), Ba(z), - -+ by

- (B0 (58 - e

k>0 >0 k>0

If we expand the formula, we get
tk 4
(Zug) (Z05) = Boto) + Brto) + Bate) -+
k>0 §>0

Comparing the coefficients of t*, we can get By (x). Some Bernoulli polynomials
are:

10
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I Claim. Bj,(0) = by,.

tet® k
Proof. In the formula etefl = Z By, (x)y, if we substitute = 0, then we get
k>0
th el tk
DUt .
k>0 k>0

I Claim. Bj(0) = By(1) for k # 1.

t tx tk
Proof. Assume k # 1. In the formula ete_ 1= I;JBk(x)Ey if we substitute
x = 1, then we get -
te! tk
7= ZBk(nH
k>0
Then,
te! t th
e > (Br(1) = Br(0)) 5 =t.
k>0
By(1)- B
Since Be() = Bi(0) =0 for k # 1, we get By(1) = By(0) for k # 1. [

k!

2.2 July 12, 2023

11 0 —1 0 -1 1 0
DeﬁneT-(O 1>,S—<1 O)’R_(l 1>,and5—<1 1). Then

S? =—1=R3
Consider the geometric series 1 4+ r + 72 + --- 4+ ™. If » # 1, then since
A=r)A+r+r2+-+7r")=1—7r"" we get

1 prtl
1 24 ... = — .
A l—r 1-7r
n+1 1
Since lim =0if0<r<1,14+r+r24+...= ifo<r<1.
n—oo 1 — 1 1—r

Definition 2.3: Riemann-Zeta Function
The Riemann-Zeta Function is defined by

C(s):2n75:1+i+i+“~

25 3%
n>1

for s > 1.

11
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Theorem 2.2: Convergence of the Riemann-Zeta Functions

The Riemann-Zeta Function converges for s > 1.

Proof.
-t (B d) e (Brdadet) e
<1+<1+1)+(¥+14—1+1)+m
28 28 4s 45 45 4
B e I
=1+4r+r24...
converges if 2!7% < 1, hence s > 1. |

Theorem 2.3: Divergence of the Harmonic Series
When s = 1, the harmonic series

1ty
23 4

diverges.
Proof.

S I iy (i) Y U A e
- 474 88788

diverges. |

23 July 13, 2023
Recall that for k even and k > 4, Si(z) = Z (mz+n)~k
(m,n)622
(m,n)7(0,0)
Theorem 2.4: Convergence of Si(z)
Sk(z) = Z (mz +n)~° converges for s > 2.

(m,n)€z?
(m,n)#(0,0)

12
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Proof. Let Sy = {(m,n)| max{|m|, |n|} = N}.

[} [ )
[} [ )
Consider the following diagram, where the inner border is S7, and the outer border
is S5. We get that

e e e

e e e

1Sy = (2N +1)2 — (2(N = 1) +1)*

= (2N +1)*— (2N —1)> =8N

We know, from Problem Set 2 P12, |mz + n| > C - max{|m|,|n|} = CN, so
|mz +n|~! <1/CN. Finally,

Sk(z) = Z (mz+4n)~*°
(m,n)€z?
(m,n)£(0,0)

= Z Z (mz+n)"?°

N2>1(m,n)eESn

Because Z N1=¢ converges for 1 — s < 1, we get s > 2. |
N>1

Now the goal is to find a Fourier expansion for Si(z) when k is even and k > 4.
That is, we want

Sk(z) — Z a(n)e%rinz

n>0

for some a(i).

13
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Problem Set 2: Bernoulli numbers and Bernoulli poly-
nomials

Problem 1
Show that
k N
Bk(x) = Z <j)$1bkj-
§j=0

This formula is sometimes written as By (z) = (x + b)*.

Problem 2

While it is not literally true that By (x) is an even or odd function according
as k is even or odd, this assertion is close to being true in at least two different
ways:

(a) Show that By (1—xz) = (—1)* By (x), whence the assertion is literally true
for the function f(x) = B(z+1/2). (Hint: te!=2)/(et —1) = —te t*/(e~! —
1).)

(b) Show that the assertion is also true for the function f(z) = By(x) +
kxk=1/2.

Problem 3

Prove that Bj(z) = kBj_1(x), and use this formula together with the fact
that By (0) = bs, to compute By (z) recursively for k < 5. Of course, we already
know that By(z) = 1, B1(z) = 2—1/2, and Ba(z) = 2?> —2+1/6. If you prefer,
use the formula By (z) = (x + b)* instead of the formula Bj(x) = kBy_1(z),
or use some combination of the two approaches.

Problem 4

Let k and n be positive integers. Give two proofs of the identity

k_ Bri1(n 41— bggq
k+1

2k 43k o4
as follows: (i) set x =n+ 1 and x = 0 in the definition
tet:r

tk
i ZBk(m)H

k>0

and take the difference. (ii) Integrate both sides of the definition with respect
to z, say from z = u to x = u + 1, and sum from u =1 to u = n.

14
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Problem 5
Show that (1+2+3+4 - +n)2=1+23433+... +n3.

Problem 6

Let N be a positive integer. Prove the “distribution relation”

N-1
NN f((@+5)/N) = f(a),
§=0
where f = Bjy.
Problem 7

This problem can be viewed as a converse to Problem 6. Fix an integer k£ > 0,
and suppose that f is a polynomial which satisfies the distribution relation in
Problem 6 for every positive integer N. Prove that f = ¢By, for some constant
c.

Problem 8

Let S and R be as in Problem 6 and 7 of Problem Set 1.

(a) Show that Si =4 and that Re?™/3 = ¢27/3,

(b) Let f be a modular form of weight k for SL2(Z). Show that if £ £ 0
mod 4 then f(i) = 0 and that if k£ # 0 mod 3 then f(e*>""/3) = 0.

Problem 9
Let GL$(R) denote the group of 2 x 2 matrices with real coefficients and
positive determinant. For v € GL] (R) and z € H, we define

az+b
cz+d

vz =

as before. Check that vz € H, and then verify that the map (vy,z) — vz is
a left action of the group GLJ (R) on the set H: In other words, show that

Iz =z and v(v'2) = (v7)=.

Problem 10

Fix an integer £ > 0. Given a complex-valued function f of H and a matrix
v € GL3 (R), define a function f |~ of H by

(f Ik v)(2) = det(7)*?(cz + d)~* f(v2).

Since k is fixed, we can write f |, v simply as f | y. Verify that the map (v, f) —
f 17 is a right action of GLg (R) on the set of complex-valued functions on H:

In other words, f|I = f and f|(vy) = (f]7)]v-

15
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Problem 11

In class, we used the convergence of the geometric series ), -, 7™ with r = ol—s
to prove that the series ) ., n™® converges for s > 1. This problem gives an
alternative proof. Write s = 1 + ¢, so that € > 0.

(a) Show that there is a positive constant ¢ depending on € such that

cc <(1+2z)°—1

for 0 < z < 1. (Using calculus, one sees that ¢ can be chosen to be the
minimum value of €(1 + z)°~! on the interval [0, 1].)

(b) By writing n™¢ — (n + 1) = (n 4+ 1)=¢((1 + 1/n)* — 1) and applying
(a) with & = 1/n, show that n=¢ — (n +1)7¢ > en~!(n + 1) ~¢. Deduce that

n+1)*<c'(n“=(n+1)"°)

and sum over n to complete the proof.

Problem 12

This problem leads to an inequality of the form |mz+n| > CN for z € H and
m, n € Z, where N = max(|m|,|n|) and C is a positive constant depending
on z. Recall that an inequality of this form was used to prove the absolute
convergence of the series 3, . o) (mz + n)~* for k > 2.

(a) Prove that for u, v/, v, v" € R we have

lut! 4+ 00| < Vu? + 02/ (W) + (V)2

(This is a special case of the Cauchy-Schwarz inequality.)
(b) Observe that n = (mz + n) + (—z/y)(my), and apply (a) with v =
mz +n, v=my, v’ =1, and v = —z/y, obtaining

VIF @y mz +n| > |nl.

Deduce that |mz +n| > CN with C = min(1//1 + (z/y)2,y).

Week 3
3

31 July 17, 2023

Definition 3.1: Fractional Part Function

For any = € R, define the fractional part function {z} by 0 < {z} < 1,
and x = {z} + n for some n € Z.

16
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Definition 3.2: Bernoulli Functions

Define Bernoulli functions By (z) = Bi({z}) where By (z) is a Bernoulli
polynomial.

For example,

[ ] BO (J?)

1
{e} -
o Bo(e) = {a}? — {a} + .

o Bi(x)

Remark.
Since By (0) = By(1) for k # 1, By (z) is continuous for k # 1.

3.2 July 19, 2023

We assume that there exists a Fourier series for Bj(r). We now will find the
Fourier series.

Lemma

Forn=20,1,2,...,

L 1 =0
/ esznmdx _ n
0 0 n#0.

1 1
Proof. If n. =0, then / 2T gy = / ldx = x’(l) =1. If n # 0, then
0

0
1 ) e2mine 1
/ e2mn'£dm — i
0 2min |,
=L (emin 1) =0 u
27in '
Suppose f(x) = Z a(m)e™ime,
meZ

I Question. How do you find a(n) for a given n?

17
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f(x)e_gﬂ—inx _ Z a(m)e27rimx—27rinx

meZ

— Z a(m)eQTri(m—n)x

meZ

If we integrate both sides from 0 to 1,

1 s 1 i)
/0 flx)e dx:/o (Za(m)e )da

meZ
1 .
_ Z a(m)/ eQﬂ’L(m—n)fde
meZ 0
Z a(m) m=n
= § mMEZ
0 m #n.

So fol f(z)e~ 2= = g(n). Let’s write this as f(n).
Now we will find the Fourier series of Bernoulli functions. We want By (z) =
S B (z)e?™ " for some By (x). We use the formula that we found above.

1
Bi(x) = / By (z)e=2mine except k # 1 and z € Z for k=1
0

1
_ / Bk (I)672m’nx'
0

We use the definition of Bernoulli polynomials. Since

teatt tk
1 E Bk(x)ﬁ
k>0 ’

1 temt o 1 o tk
/0 S 1¢ dx—Z(/O By (x)e dz>k!

k>0

. k
= ZM@)%

k>0

18



PROMYS - Modular Forms Joshua Im (July 3 - August 10, 2023)

Therefore,

93 tk ' te®! —2minz
ZBk(w)H:/O S 1¢ dz

k>0
¢ 1
— - : 6 6727r1nxdx
et —
b [ omim)
_ —2min)x
=1 e dx
t 6t727rin_1
T —1 t—2rmin
t e —1 t

et —1 t—2min  t—2min’
If x =0, we get

> Bi(@)z; = Bo(0) + Ba(0)t + Ba(0)5 +- -+ = 1,

k>0
s0 By (0) = 0 for k> 1, and By(0) = 1.
If n # 0, we get
t t/2min

t—o2min 1 —t/2min

g kP
Z(an) :Z (2min)F kI
k>1

k>1

. k!
Soifk>1landx ¢ Zifk=1,Bg(z) = ﬁforn;&o and
in

.23) — Z Ek (n)€27rinz

n#0

_ Z —k! Qﬂinr
(2min)k
k' 1 2minx
= 2mi)k D Ee
n#0

3.3 July 20, 2023

I thank Emmy Huang for helping me with notes for this session.
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If we substitute 2 = 0 in the formula of By (z), since By (0) = B (0) = bg,
k! 1
by = ——r =
k (2mi)* Z nk
n#0

1
Suppose k > 2, and k even. We have E — =2 E n~* =2¢(k). So
n
n#0 neN

R ~ (2mi)kb
by = )k (k), and (k) = _Tk!k

Recall that S;(z) = Z (mz 4+ n)~*. Let this be I+ II where

(m,n)€z?
(m,n)7#(0,0)

I= Z(mz—i—n)_k

m=0
n#0

_ Z (Z(mz + n)fk) ((—mz — n)k = (mz —i—n)k)

(=2mi)* k—1 2midw
I Z d" e , from Problem 11 of Problem

(lf—l.le
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Substitute w = mz into II gives

Z Z k: 1 27mdmz
k

T d>1
! Z de 1 27mdmz (k is even)
m>1d>1
k— 1 27rinz
] N Zd
n>1
27Tinz
n>1
Therefore,
(27m)kbk 2(271—2) Tinz
Sk‘(z):_ k! 'Zok 1 2 .
n>1
Definition 3.3: Ei(z)
Ej(z), normalization of Si(z) is defined as
E i S
K(2) = —m k(2)
2k ,
—1_ bi Zakil(n)ewrmz.
k
n>1
If we let ¢ = €2™%#, then
2k
E,=1- . op—1(n)g"
n>1
Example 6
Ey=1+240) o3(n)q" =1+ 240(q+ 9¢> + 28¢° + - )
n>1
Example 7

Eg=1-504) o5(n)q" =1—504(q+33¢> +---)
n>1

21



PROMYS - Modular Forms Joshua Im (July 3 - August 10, 2023)

Example 8
Even though it is defined for k > 4, we try k = 2.

By=1-24) o1(n)q".

n>1

However, we get a contradiction because E(Sz) # (12+0)?E(z). Alternatively,

we try defining Si(2) = Z (mz +n)~2. Then,

(m,n)€z?

(m,n)#(0,0)

S09= Y
2 = —3
(m,n)€z? (mfyz + n)
(m,n)#(0,0)
1

= Z : b 2
(m,n)€z? az
(m,m)£(0.0) (m crd "
1
= d)? —_—
(2 +d) ( Z) P
() #(0,0)

where (m’ n') = (m n) <Z Z) Because this don’t absolutely converge,

12
So(v2) — (cz + d)2Sa(2) = 2—7;

Problem Set 3: Diagonal Quadratic Forms

Problem 1

By a positive-definite diagonal quaternary quadratic form over Z we mean a
polynomial of the form f(z1,xa, 73, 24) = az?+bx3+cx?+dr? with integers a,
b, ¢, d > 0. We denote this expression [a, b, ¢, d]. After permuting the variables
x; we may assume that f is normalized in the sense that a < b < ¢ < d.
We say that f is wniversal if it represents every positive integer, i.e. if for
every positive integer n there is a choice of integers ni, no, ns, ng such that
n = f(n1,na,n3,ng). In 1916 Ramanujan claimed to give a complete list of
universal normalized positive-definite diagonal quaternary quadratic forms:

(a) [1,1,1,i] with 1 <i <7,

(b) [1,1,2,i] with 2 < i < 14,

(c) [1,1,3,4] with 3 <7 <6,

(d) [1,2,2,i] with 2 <7 <7,

(e) [1,2,3,4] with 3 < i < 10,
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() [1,2,4,] with 4 < < 14,

(g) [1,2,5,i] with 5 < i < 10.
Ramanujan’s list was later proven to be correct except that the form [1,2,5, 5]
had to be removed. Why did [1, 2,5, 5] had to be removed?

Problem 2

The case i = 1 of (a) in Problem 1 is Lagrange’s Four-Squares Theorem: Every
positive integer is a sum of four squares of integers. Let

.2 22
19(2) _ ZeQTrln 214 26277171 z
neZ n>1
We often write ¥(z) = 1+23 -, ¢" with ¢ = e>™=. Let t be a positive
integer. Explain why
9 = rin)g",

n>0

where 7¢(n) is the number of t-tuples of integers (n1,ns,...,n;) € Z* such that
n? +n% + - +n? = n. Thus, to prove the Four-Squares Theorem, it suffices
to show that r4(n) > 1 for all n > 0.

Problem 3

By the end of the program, we hope to have some idea of why modular forms
can be used to prove Jacobi’s formula:

r4(n) :8 Z d,

d|4,4¢d

where d runs over all positive divisors of n which are not congruent to 0 mod
4.

(a) Why does this formula prove that r4(n) > 1 (actually r4(n) > 8) for all
n?

(b) Using Jacobi’s formula, show that r(2¥) = 24 for every integer v > 1.
Then write down the 24 elements of {(ny,na,n3,n4) € Z* : n2 +n3+n2+n2 =
2"} explicitly. You may also have to distinguish between the cases v of even
and odd.

Problem 4

Also use Jacobi’s formula to show that r4(mn) = r4(m)ra(n)/8 for coprime
integers m, n > 1.

Problem 5
In class, we deduced the formula (k) = —(2m4)*by/(2 - k!) (valid for k even
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and k > 2) by taking = 0 in the Fourier expansion

2minx
k! e

(2mi)k = nk

Bi(z) = —

(valid for kK >2or k=1 and z € Z).

(a) By making different choices of x you can obtain other formulas. For
example, show that > o (=1)""'n=2 = 72/12.

(b) Alternatively, show that > o (=1)""ln=¢ = (1 — 217%)((s) for s > 1,
and thus derive the formula in (a) from the value of ¢(2).

Problem 6

Let N be a positive integer. In Problem 6 of Problem Set 2 we saw that the
“distribution relation”

N—-1
N*UN" F((z+5)/N) = f(a)

Jj=0

was satisfied when f = By.

(a) Given n € Z, show that Z;V:_Ul e?™ii/N equals 1 or 0 according as N
does or does not divide n. (Hint: Use the formula for 1 +7 + 72+ ... + V=1
with 7 = e2m7/N )

(b) Use the Fourier expansion of By to prove that By satisfies the distribu-
tion relation for k£ > 2 and also for k = 1, at least if x ¢ Z.

Problem 7

Now give a proof that the distribution relation is satisfied by all £ > 1 and all
z € R by reducing to the familiar case f = By from Problem 6 of Problem
Set 2. (Hint: Show that the left-hand of the distribution relation is a periodic
function of x with period 1.)

Problem 8

Show that in contrast to By, which is not quite an even or odd function (see
Problem 2 of Problem Set 2), the function By, is even or odd according as k as
even or odd, which the provision that if K = 1 then we must exclude = € Z. In
other words, By (—x) = (—=1)*Bg(x) if k # 1 or x ¢ Z.

Problem 9
This problem is a converse to Problems 6 and 7. Let f be a periodic function
on R with a Fourier expansion f(z) = >, ., a(n)e*™™*, and suppose that

f satisfies the distribution relation as well as the parity relation f(—z) =
(—=1)¥ f(x). Show that f = cBy, for some constant c.
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Problem 10

Let F be the set of z € H such that —1/2 <z < 1/2 and |z| > 1. The purpose
of this problem is to prove that for every z € H there exists v € SLs(Z) such
that vz € F. Write z(yz) and y(yz) for the real and imaginary parts of vz.

(a) Given z = z + iy € H, show that the set of imaginary parts y(yz) with
v € SLy(Z) and y(yz) > y is finite. (Hint: Since y(vz) = y/|cz + d|?, it is
enough to show that there are only finitely many pairs of integers (¢, d) such
that |cz + d|?> < 1. Now use Problem 12 on Problem Set 2.)

(b) Deduce that the set {y(yz) : v € I'} has a maximal element. Then
show that v € SLy(Z) can be chosen so that y(yz) is maximal and —1/2 <
x(yz) < 1/2. (Hint: Replace vz by T"z if necessary, where n is an appropriate
integer.)

(c) Show that if « is chosen as in (b) then |yz| > 1, whence vz € F. (Hint:
If |y2z| < 1 show that y(Svz) > y(yz), contradicting the maximality of y(vz).)

Week 4

4

4.1 July 24, 2023

Definition 4.1: Congruence Subgroup

For N € N, define the congruence subgroup I'i (N) as the subgroup of all
v = (Z Z) € SLy(Z) such that

a=d=1 mod N

c=0 mod N

Definition 4.2: T'y(N)

T'o(N) is the subgroup of all vy = (Ccl Z) € SLy(Z) such that ¢ =0 mod N
soy=( b mod N
7=\o 4 '

Remark.
If N = 1, then Fl(N) = SLQ(Z)
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Before we define some new modular forms, we first start with a terminology
that is used.

Definition 4.3: Polynomial Growth

A function f(n) has a polynomial growth if there exists constants ¢, d > 0
such that

o |f(n)| <c-n?forn>0

o |f(n)| < n? for sufficiently large n.

Definition 4.4: Modular Form for T’

Let T be T'1(N) or T'g(N). A modular form of weight & for I is a function
f:+ H— C such that

1. f(v2) = (cz + d)k f(2) for any v = <(cl Z) el
2. f is represented by a convergent Fourier series

1) = 3 aln)e=in:

n>0

where a(n) has polynomial growth in n.

2k
Question. In F}, = 1—b— Z or—1(n)q", does o1 _1(n) have polynomial growth?
k

n>1

Solution
op1(n) =Y d*t <m0kt =0k
d|

s0 0x—1(n) has polynomial growth.

Definition 4.5: Vector Space of Modular Forms

Define My (N) be the vector space of modular forms or weight k for
'y (N).

Example 9
M;(N) is the vector space of modular forms of weight k for SLy(Z).
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Theorem 4.1: New Modular Forms from Old
If fe Mk(N) and g € Ml(N), then fg S Mk+l(N)-

Proof. We need to prove that fg satisfies the two properties of modular forms.

For property 1, since f(7z) = (cz+d)* f(2) and g(v2) = (cz +d)'g(2), (fg)(yz) =
(cz + d)**!(fg)(z). For property 2, you can just multiply the Fourier series of f

and g. |
Corollary
E? = FEs.

Proof. E4 € My(1). Then EF € Mg(1). Therefore Ef = cEg for some constant c.
If we compare the constant terms of the expansion,

(1+240 Z Ug(n)q")2 = c(1+ 480 Z o7(n)q"),

n>1 n>1

soc=1and E} = Es. |

4.2 July 26, 2023

We use a new notation. Let f be a modular form.
Definition 4.6: (f | v)(2)

(det )"/

(fle)(z) = (o2 + d)F

f(vz2).

Remark.

Ify=al = <g 2), then f |y = f because

a2k/2

flr =) = S,

Remark.
If v € SLy(Z), then

Fley = (cz+d)7*f(yz) = f(2)

by the definition of a modular form.
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Let P = E5, Q = E4, and R = Eg. Recall that P = F;, =1 — 24Za(n)q"
n>1
where ¢ = €% and o = o1(n) Z d. We have

d|n
12
Es(Sz) = 2°Ea(2) + ——,
27
. 12
or equivalently, P|s S = P + p where p = ——.
2miz

Definition 4.7: v(N)

Define v(N) € GL3 (R) by v(N) = (Z(\)] (1)) where N > 0.
Aﬂ#?
Then, f|rv(N) = mf(]\fz). Soif k=2, we get flav(N)=Nf(Nz).

We now define D by D = P|v(2) — P. We will show that D € M»(2), i.e. D
is a modular form of weight 2 for I'1(2).
We first look at the Fourier expansion.

Proof. By definition,
D=P|v(2)-P

=2(1-24) o(n)g"e™ ")) — (1-24 o(n)q")

n>1 n>1
=1+ 24( Z a(n)q"” — Z 20(n)g*")
n>1 n>1
=1+ 24( Z o(n)g" + Z o(2m)g*™ — Z Oeven(20)@*")  (n = 2m)
n>1 m2>1 n>1
n odd
=1+ 24( Z o(n)g™ + Z oda(2n)q"")
n>1 n>1
n odd
=1424) 0oaa(n)q". ]
n>1

1 1
and T = UY generate I';(N). So T and U? generate I';(2). Therefore, we can
write

We now must show that D|sy = D for v € T';1(2). Recall that U = (1 O)

’Y — Tn1 U2n2Tn . Tnl U2nH_1
3 .
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If we show that D|T = D and D|U? = D, then we can get D |y = D for all
v e F1(2)

4.3 July 27, 2023
I thank Emmy Huang for helping me with notes for this session.

We begin with defining a new operator.

Definition 4.8: w(N)

For N > 1, let w(N) = <](\)[ _01>

Remark.
If N =1, then w(1) = S.

Lemma
w(N) normalizes I'; (N), i.e. w(N)I1(N)w(N)~t=T1(N).

Proof. Suppose v € I'y (V). Then

comanrt=(3 ) D )G )

Since a = d =1 mod N, and —Nb =0 mod N, w(N)I'1(N)w(N)~! C I'1(N).

Similar calculation gives w(N) 7T (N)w(N) C T1(N),s0T1(N) C w(N)I'1(N)w(N)~L.
Therefore, w(N)['1(N)w(N)~t =T1(N). [ |

Corollary
If f € My(N), then f|w(N) € My(N).

Proof. We only prove property 1. Given v = <z Z) e I'1(N),

(Flw(N)) |7 = flwN)yw(N) " w(N)
= flw(N). m

Remark.

(10 (11 (1 -1
Recall U = (1 1) and T = (O 1) soT—+ = (O 1 ) Then

. (0 —1\/1 —1\/0 1/N\ (1 0\ _  x
w(N)T™ w(N) _(N 0)(0 1)(1 ())_(N 1>_U'
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We finally prove property 1 for D = P |v(2)—P. We must show that D |y = D.
Since I'1(2) is generated by T and U?, it is enough to show that D|T = D and
D|U?=D.

For D|T = D, D|T(z) = D(Tz) = D(z + 1) and since e2>m(>+1) = ¢2miz .

e2mi e?™% 5o any Fourier series is invariant under z + z + 1. Therefore,

D|T(z) = D(= +1) = D(z).
Problem Set 4: Fourier expansions and identities

Problem 1

For this week’s problem set, it will be useful to have some Bernoulli numbers
handy. In class, we saw that bg = 1, by = —1/2, by = 1/6, and by = 0 for all
odd k > 3. Now show that by = —1/30, bg = 1/42, and bg = —1/30. For the
record, b;0 = 5/66, but that fact won’t be needed in this problem set.

Problem 2

It will also be useful to have a few Fourier expansions of Eisenstein series
available. Let k& > 4 be an even integer. Using the formula

2k ,
E,=1- - Z op—1(n)q"
k n>1

where o4(n) =3, d* and q = €*™% show: E4 = 1+240(q+9¢*>+28¢>+- - -),
Eg=1-504(q+33¢> +244¢® +---), and Eg = 1 +480(q + 129¢*> + - - -).

Problem 3

Let My (N) be the vector space of modular forms of weight k for T’y (N). Tt is
a fact that My (1) is one-dimensional for & = 4, 6, 8, and 10. Using this fact,
derive the bizarre identity

o7(n) = o3(n) + 120 i:ag(j)ag(n - 7).

Jj=1

Deduce that if p is a prime then p” = p® + 120 Zf;i a3(j)os(p — 7).

Problem 4
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Let £ C R® be the set of integral linear combinations of the rows of the matrix

0 0 0 0 0 0 0
-1 0 0 0 0 0 0
-1 0 0 0 0 0

1 -1 0 0 0 0

0 0 0

0 0

2
1
0
0
0
0
0 0 0 0 0 1 -1 0
1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
and put f(z) = 3, €"™*, where [ - [ is the dot product of [ with itself (so if
= (z1,%2,...,28) then [ -l = 2% + 23 + .- + 22).
(a) Prove that [ -1 € 2Z for all | € L.
(b) Let a(n) be the number of I € £ such that { -] = 2n, so that f =
Y onsoa(n)g™. Ttis a fact that f € My(1), the space of modular forms of weight
4 for SLy(Z), which is a one-dimensional space. Deduce that a(n) = 24003(n)
for n > 1.
(¢) Can you exhibit the 240 points [ € £ such that [ -] = 27?

Problem 5
Let £ € R® be as in Problem 4, and let A C R'® be the set consisting of vectors
(z1,x2,...,216) such that both (z1,z2,...,25) € £ and (z9, 210, - ..,216) € L.

(One could also write A = L @® L.) Let b(n) be the number of A € A such that
A - A = 2n. Show that b(n) = 48007(n) for > 1.

Problem 6

By comparing Ej with EZ, prove that Mi2(1), the space of modular forms of
weight 12 for SLs(Z), has dimension at least 2. Actually M;2(1) has dimension
exactly 2, and 12 is the smallest k such that M (1) has dimension > 1.

Problem 7

Recall that in Problem 10 of Problem Set 2 we introduced the notation f |~y
for v € GLI (R).

(a) Show that di'yz = (dety)(cz +d) ™2
2

(b) Let f be a modular form of weight k for SLy(Z), and take v € SLy(Z).
By differentiating both sides of the equation f(yz) = (cz + d)¥ f(z), show that

F'(vz) = (ez + )2 f'(2) + ke(ez + d)* 1 f(72).

We can write this as f’ [s127 = f' + kc(cz +d) =L f(2). Because of the second
term on the right-hand side, f’ is not quite a modular form of weight k + 2.
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Problem 8
Put 0 = (27i)~'d/dz, so that 0¢" = 0e®™"* = nqg. Also, put P = Ey =
1=24%" 5, 0(n)q", where o(n) = 1(n) = 3, d, and recall that

P(Sz) — 22P(2) = 12z/(2mi).

Given a modular form f of weight k for SL2(Z), put 9f = 120f — kPf. Show
that 0f is a modular form of weight k + 2 for SLo(Z). (Hint: It suffices to

show that Of |x+2S = Jf, because the existence of a Fourier expansion for 0 f
gives Of | T = Of.)

Problem 9

Show that 0F4 = —4FEg. (Hint: It suffices to check that the constant terms in
the Fourier expansions of the two sides agree. Why?)

Problem 10

Show that O satisfies the product rule for derivatives: If f and g are modular
forms for SLy(Z) of some weights k and [ respectively then d(fg) = (0f)g +

f(99).

Problem 11
The purpose of this problem is to prove the identity

Z(w + n)fk _ (_27TZ)k defle%ridw
(k-1

nez d>1

for w € H and k > 2. Recall that the identity above is used to derive the
Fourier expansion of } -, ) (0.0)(mz + n)~* for k > 4 and even.
(a) Show that the identity follows from differentiating both sides of the

identity 4
—7i + Z(w + ,n)—l — (_27.”) Z eQﬂ'zdw
neZ d>1

K — 1 times. (On the left-hand side of the identity in (a) the terms (w +n)~!
and (w — n)~! have to be grouped together to ensure absolute convergence.)
Thus, after adding —w ™! to both sides of the identity in (a) we see that is
suffices to prove that

1 ida
—Ti + Z(w +n)"t = —27ri(2m,w + Z eZmidwy,

n#0 d>1

(b) By the “principle of analytic continuation” (a black box, unfortunately)
it now suffices to prove that the two sides of the formula above have the same
Taylor series expansion at w = 0. Express the Taylor series on the left in terms
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of values of ((s) and hence in terms of Bernoulli numbers, and express the
Taylor series on the right in terms of the generating function of the Bernoulli
numbers.

Week 5
5

5.1 July 31, 2023

To prove D|U? = D, we first show that D|w(2) = —D. How do we prove
D |w(2) = —D? To prove this, write

D|w(2) = P|v(2)w(2) — P|w(2)
= P|S(2I) - P|Su(2)

=(P+p) —(P+p)|v(2) (P|S = P+ p, and ignore 21)
=(P+p) — ((Plv@2)+p|v(2)
=(P+p) - (P|v(2)+p)

I Question. Why is p|v(2) = p?

For any f,

So let k = 2, and we get

12
2miz’

Since p(z) =
12 12
2mi-2z  2miz

plv(2) = =p-

I Claim. If v € T'y(rN), then v(r)yv(r)~t € T1(N)
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Proof. Suppose v = (Ccl Z) € I'1(rN). Then

o= 1) (2 0) (i)
(D)
“( )

Since a, d =1 mod rN, a, d = mod N. Also, since ¢ =0 mod rN, ¢/r =0
mod N. Therefore, v(r)yv(r)~! € T'1(N). [ ]

I Claim. If f € My (N) then f|v(r) € My(Nr).

Proof. Take v = <Z b) € I'y(Nr). Then

d

(flo@) 1y = flo)yo@) o) = flor)

because v(r)yv(r)~! € T'1(N), hence f|v(r) € My(Nr). |

Definition 5.1: The Delta Function

Define A by
A(Z) — 2miz H(l _ e27rinz)24 =q H(l _ qn)24.
n>1 n>1
Theorem 5.1
A€ Mlg(l)

Proof. We start from taking logs from both sides of A(z) = e?7i* H (1—e2min=)24,
n>1
|

log A(z) = log e*™* 4- 24 Z log(1 —q")
n>1

= 2miz +24 ) log(1 - ¢%).

d>1
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d
Take - of both sides. Then you get
z

A'(z) e?midz 2md
=2mi+ 24 _—
A(z) ;
= 2m(1 —24Zd1 — )
d>1
:2m(1—2422d-qmd) (17“ :qu)
d>1m>1 ]
=27 (1 —24 Z Z d)q ) (Letting n = md)
n>1
=2miFEy = 2mwiP.

5.2 Augqust 2, 2023

We continue the proof of A € Mjo(1). It suffices to show that A2 5 = A

. NOEN (0 -1
By using the formula AG) 2miP and S = (1 0 >, we get
A'(Sz) A ) )
(124 0) AS) A 2.5' =2miP |3 S = 27i(P + p)
where p = 12, .
2miz

A/ 12
RHS = 27miP(z) + 2mip(z) = ()

Since RHS=LHS,
LAN(S2)  Allz) 12

A2 AR
We take the antiderivative of both sides.

log A(Sz) =log A(z) + 12log z + ¢
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So
A(Sz) = CA(z) - 22

where C = e°.
Take z = 4. Then, Sz = (0i — 1)/(1i + 0) = i. So the formula becomes
A(i) = CA(3). Since A(7) # 0 by definition of the delta function, C' = 1.

Question. In the definition of the delta function, the term in the infinite product

is smaller than 1. What happens if we multiply infinite terms less than 17 Does
it become 07

Solution The term goes to 1 as n — oo, so the infinite product can’t go to 0.
So A(Sz) = A(z)z!'2, which is a modular form of weight 12. We will now use A
to find the dimension of M3(4). We use D =1+ 24 Z Oodd(n)q" € M2(2) again.

n>1
I Claim. If f € My(N) and r > 1 then f € M, (rN).
Proof. Suppose f € My(N) and v € I'1(rN). Then, f|ry = f because f €
My(N). Since vy € T'1(rN) C T'1(N), so f € M(rN). [ |

With N =2 and r = 2, we get D € M3(4) (r = 2) because D € M3(2). Recall
that if f € My(N), then f|v(r) € My(Nr). Hence D|v(2) € Ms(4).
Also recall that f |, v(r) = r*/2f(rz). So for k = 2, flav(2) = 2f(22), so D €
M,(4), and D* = 1D |v(2) = D(2z) € M(4). Therefore, D, D* € M(4). Here,
D*=1 + 24200dd(n)q2".

5.3 Augqust 3, 2023

I thank Diana Harambas for helping me with notes for this session.

We know D, D* € Ms(4) where D = 1424 Z Ooad(n)q" and D = 1424 Z Toad(n)g*™.
n>1 n>1
Thus

D =1+ 24q+ 24¢* + - --
D* =1+ 0q+24¢* + - --

So neither D not D* is a scalar multiple of the other, so these two are linear
independent. Since dim M3(4) = 2, D and D* are a basis for Ma(4). Use the
notation D* =1+ 243" 0,44(n/2)q"™, where 0oq4(n/2) = 0 when n is odd. Now

consider
O(z) = > ra(n)q"

n>1
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where r4(n) = [{(n1,n2,n3,n4) € Z*|n? +n3 4+ n% +nj = n}|. Then, © € My(4).
Since D and D* are basis of M3(4), © can be expressed as

O=a(l+24q+24¢* +---) +b(1 +0g+24¢° +---) =1+ 8¢+ 24¢* + - - -.
. 1 2
Thus, since 1 = a + b and 8 = 24a, Wegetazgandb=§. So, forn >1

1 2
. 2400dd(n) + g . 2400dd(n/2)

~3
= 8(Uodd (n) + 2O'odd(n/2))

8( > d+ Y d)

ra(n) =

dln d|n
d=+1(4) d=2(4)
=8( > ),
d|n
dzi)(4)

so we get Jacobi’s formula.
Theorem 5.2: Jacobi's Formula

For n > 1, r4(n) = S(Zd).
d

ne
If k is even, then Mj,(4) = Mj,(I'1(4)) = My (To(4)). Recall that I'y (2) = T'g(2).

Lemma

Mg (T'1(4)) = My (To(4)).

Proof. We prove two parts: My (I'1(4)) € My (To(4)) and M (To(4)) € Mg (T1(4)).
We certainly have the first part, so we prove the second part. Suppose f €
M (T1(N)) and v € I'g(4). We want to show that f |,y = f. We divide into
two cases.
First case: If a, d =1 (mod 4), y € T'1(4), so f|v=f.
Second case: If a, d Z 1 (mod 4), then a, d = —1 (mod 4). Thus

fly=flv(=D(-I)

=1 (=D) (=)

= fl(-D =1 .
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Problem Set 5: The Delta Function

Problem 1

Recall from Problem 6 on Problem Set 4 that the space of modular forms of
weight 12 for SLy(Z) has dimension 2. Deduce that E3 — EZ = 1728A.

Problem 2

This problem involves both some historical background and also a personal
note. The historical background is that Hardy once remarked to Ramanujan
that 1729 seemed like a boring number, and Ramanujan replied that it wasn’t
boring at all: It is the smallest positive integer that could be written as a sum
of two cubes in two different ways (here “different” means “genuinely different,”
i.e. not achieved just by switching the order of the summands). The personal
note is that once while giving a lecture I carelessly claimed that 1729 is a prime.
Somebody in the audience corrected me right away and also pointed out that
my integer which can be written as a sum of two cubes in two different ways
is not prime.

(a) Factor 1729.

(b) Write 1729 as a sum of two cubes in two different ways.

(c) Prove that if n > 0 can be written as a sum of two cubes in two different
ways when n is not prime.

Problem 3

When A is written as a Fourier series rather than as a product, the Fourier
coefficients are usually denoted 7(n), so that A = >~ _, 7(n)q". Prove the
famous Ramanujan congruence 7(n) = o11(n) mod 691 for all n > 1.

Problem 4

The formula P |S = P+p for P = E5 and p(z) = 12/(27miz) can be generalized
as follows: (P|7y)(z) = P(z) + 12¢/(2mi(cz + d)) for arbitrary v € SLy(Z).
Deduce this formula from the relations A(yz) = (cz + d)'2A(z) and A'/A =
2mi P by logarithmic differentiation.

Problem 5

This problem leads to a generalization of the modular form D. For an integer
N > 11let ™) (n) be the sum of the positive divisors of n which are relatively
prime to N, and put Dy = — HP‘N(I —p)+24 ZnZl o) (n)g"™. So Dy = D.
Also Dy = D), where M is the largest squarefree integer dividing N.

(a) Define u(n) to be 0 or (—1)" according as n is divisible by the square
of a prime of n = pypy---p; with distinct primes pq, po, ..., ps. Prove that
2rn (1) is 0 or 1 according as n > 1 or n = 1.
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(b) Show that Dy = — 3=, x u(r)P | v(r), where v(r) differs from the iden-
tity matrix only in the upper left-hand corner, where 1 is replaced by r.
(c) Deduce that Dy is a modular form of weight 2 for T'g(N).

Problem 6
Define a twelfth root of A by AY/12(z) = e22/12T] _ (1 — e?7in=)2,

(a) Show that A/12 |}y = 2mw(M/12A12 for ~ € SLy(Z), where w is a
function from SLy(7Z) to the integers mod 12 which satisfies w(yd) = w(y) +
w(0).

(b) Show that log A(—1/z) = 121log(z/i) + log A(z).

(c) Prove that w(S) = —3 and w(7T') = 1, and deduce that w coincides with
the map

w()=1=c*)(db+3d(c—1)+c+3)+c(d+a—3) mod 12

in Problem 10 of Problem Set 1.

(d) Show that w(y) = 0 for v € I'(12), where I'(V) is the subgroup of
SL2(Z) consisting of matrices which are congruent to the identity matrix mod-
ulo N.

Problem 7

Put f(z) = ¢l (1 — ¢")*(1 — ¢*'™)?, where ¢ = €*™* as usual. Show
that f is a modular form or weight 2 for To(11). By the way, if we write
f(z) = 3, >; a(n)g™ then for all primes p # 11 the quantity p — a(p) is the
number of solutions (x,%) of the congruence

y? +y =2 — 2% — 10z — 20 (mod p).

For example, if p = 2 then there are four solutions, namely (0, 0), (0,1), (1,0),
and (1,1), and since a(2) = —2, we do have 2 — a(2) = 4.

Problem 8
Let p be an odd prime. Show that any homomorphism I'1 (p) — {£1} is trivial.

Problem 9

Put f(z) = q[],>;(1—q¢")(1—¢**"), where ¢ = €*™* as usual. Show that f is
a modular form of weight 1 for I';(23). (Hint: First prove that f? is a modular
form of weight 2 for I'y(23).) By the way, if we write f(z) =3, <, a(n)q"” then
for all primes p # 23 we have B

0 if — 23 is not a square mod p,
a(p) =¢2 if p=a? + 2y + 6y has a solution with x,y € Z

—1 otherwise.
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The first and second cases are mutually exclusive, although this may not be
obvious.

Problem 10

It was mentioned in the first week of class that a modular form of weight 0
is constant. This fact can actually be deduced from Problem 10 of Problem
Set 3 as follows. Let F be as in that problem, and f = Y ., a(n)e?™"* be
a modular form of weight 0 for SLy(Z). After subtracting of the constant
function a(0) from f, we may assume that a(0) = 0. The deduction requires
two black boxes, unfortunately.

(a) One black box is the fact that a continuous real-valued function on the
set F¥ ={z € F : y < yo} (or on any “closed and bounded” subset of C)
attains a maximum value. So |f(z)| attains a maximum value on F¥. Using
the fact that lim,_, | f(2)] = a(0) = 0, deduce that | f(z)| attains a maximum
value on all of F.

(b) Now use Problem 10 of Problem Set 3 to show that f attains a maximum
value on all of H, and in fact that the maximum value of |f(z)| on F is
the maximum value |f(z)| on H. Drawing the desired conclusion (that f is
constant) requires a second black box: If f is a holomorphic function (as our
f most certainly is) such that |f(z)| attains a maximum value on a connected
open set like H then f is constant. So a modular form of weight 0 for SLo(Z)
is constant.

Week 6

6

6.1 Augqust 7, 2023

Our goal is to prove

dim My (To(N)) < 1+ H;J

where t = [SLy(Z) : To(N)] Note: If N =4, k =2, then ¢t = 6. So we get
dim M5 (To(4)) < 2
But D, D* are linear independent and in M (Tg(4)), So dim M»(To(4)) = 2.

Definition 6.1: Right Coset

Let G be a group, and H be a subgroup of G. A right coset of H in G is a
set of the form
Hg={hg : he H}

where g is any element from G.
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Theorem 6.1
Forg, ¢ € G,if HNHg' # & if and only if Hg = Hg'.

Proof.
HgNHg < hg = h'g for some h,h' €¢ H
e g=(h""")g
= Hg=H(h 'h)g = Hyg'. [ |
Corollary

G:U Hyg; (disjoint union)
J

Definition 6.2: Index

¢
IfG= U Hyg; (disjoint union), then we call
J

t=[G : H]
the index of H in G.

Remark.

We say that H has finite index in G if G = UH g; involves only finitely

J
many j, i.e. if ¢ is not infinite.

Remark.

Suppose we have G = Ung. For any g € G, Gg = UH(gjg) =G.
J J

Then, we define this some other coset Hg,g by Hg,(;) where o is a permutation
of the set {1,2,...,t}. So g;g = hg,(;) for some h € H.
We now go back to SLy(Z) and T'y(IV). Note that

[SLy(Z) : To(N)] =N ] (1 + ;)

p|N

is finite. Now, if f € Mj(I'o(N)), then

F =] fled; € Mit(SL2(2))

Jj=1
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t
where SLy(Z) = U T'o(N)d; (disjoint union).
j=1

Lemma

F‘k}t(S:F

b

a
Proof. Let § = (c d

So,

) € SLy(Z). Observe that (F | 0)(2) = (cz + d)~*F(52).

Flped = (cz+d) " FF(52)

t
= (cz+d)” Hf\ké

|
:ﬂ

(cz+d)™"(f |1 6;)(02)

<.
Il
—

t
LI 1k65) 16
j=1

t
11 71k650
j=1
H f k7566

where y; € I'1 (V). Therefore,

t
Fld =] flvd0)

Jj=1

= H I 1567 k65 )
H K 0o(j) = F |

6.2 Augqust 9, 2023

I thank Vincent Tran for helping me with notes for this session.

Our goal is to prove dim My (Do(N)) < 1+ [ £ | where t = [SLy(Z : To(N))].
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Let v = L%J Define a linear map

T : Mp(To(N)) — C” .

by T(f) =T(>_ar(n)q") = (as(0),ar(1),...,az(v)).
n>0
We now want to show that T is injective. Thus we want to show that if T'(g) =
T'(h) for some g, h € M, (To(N)), then g = h. Thus f = g—h # 0. But T(f) =0,
¢

which is a contradiction. Now write SLy(Z) as a disjoint union U To(N)f;. Then
j=1
F=5_1fj € Mp(SLa(Z)). So F =0+ 0w+ 0¢* +0¢® +--- +¢"*' +--- and
F12 =040g+---+0gWt12=1 4 o(v+112 GQince A = ¢ H = 0+ (something)q +
n>1
(something)g®, AF* = 0+ 0g + 0g> + - - - + (something)g*! + - -+ € Mioy: (SLa(Z)).
As A is never zero on the upper half plane, we can consider F''2/AFt,

I Claim. F'2/AF is 0.
o (CZer)l?ktF(z)lQ

We then want to find the weight of %(vz) = (ot d)TA ) This is weight

0 after cancelling. Since modular forms of weight 0 are constants, F'2/A* is a
constant. Next, we’ll show that the constant is 0. This is a contradiction since if

t

F =0, then H fle fi =0, s0 f =0, which is a problem since f is not 0. So T is
j=1

injective and dim M, (FO(N)) < 1+ v. The function f doesn’t explode as y — oo,

but if there are negative powers there’d be an explosion. Thus we still must check

Fourier expansion.

F12 = OgvD12 4 .
Akt — qut.
where C' is locally some constant. So

F12

E _ Cq(u+1)l27kt +...

In order to ensure that there is no explosion, (v + 1)12 — kt should be greater
or equal than 0 (i.e. the second property of modular forms). If there is equality,

then we have that it is a constant. But if we show that (v + 1)12 — kt > 0,
12

then lim E(zy) = 0, so the constant is 0. Therefore, our goal is to show that
Y—00
(v +1)12 > kt.
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6.3 August 10, 2023

I thank Eamon Zhang for helping me with notes for this session.

Definition 6.3: 9(¢)
Define ¥(t) as

I(t) = Z e =142 Z e for t > 0

nez n>1

Observe that 9(t)* = Y, g ra(n)e™™ =37, g ra(n)e® ™ E/2) Then d(y)* =
S} (?) for y > 0.

I Claim. (1 /70 (y).

By principle of analytic cont, © |w(4) = —0, O |w(4)~! = —O. Now recall
that

O|U*=0|w@)|T 4 |w4)?!
=0T w4
=-0|w@)t=6.

So ©|U* = © and also ©|T = O. Since T and U* generate I';(4) and M(4) =
M, (P1(4)) = M, (F0(4))7 we get (SRS M2F0(4)
I Question. Why do we have 9¥(1/t) = V/td(t) for t > 0?

We use Fourier analysis for this. Recall that J(t) = =3 _, et For
functions f : R — C of rapid decay, we define the Fourier transform of f by

i) = / " e ay,

Then we have some properties.

Theorem 6.2: Poisson Summation Formula

ST fm) =" f(n)

nez neEZ
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Lemma
ffz)= e~ then f=r.
Now define f,(x) = f(ax) where a > 0. Then, f,(z) = %f(x/a)

Proof.

fula) = /_ faly)e 20 dy
= [ " Flag)emio dy

1/ flay) _me( )(ady)
ol ay)e o ay)(ady).
Let u = ay. Then

[ e ety = 5 [ pwe L du

We now apply with f(z) = e~Pie’ We get

fa(x) = if(x> — lefr(nc/a)2

a

So by the theorem with f, above, we get

Y faln) =3 flan)

nez nez

_ § e—pin2a2

nez

= Z fa(n)

nez

_ é Z 6771'7’7,2/0,2'

neE”Z

Putting y = a® > 0, we get the desired result.
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Problem Set 6: Farewell!

Problem 1

Recall that o(n) is o1(n), the sum of the divisors of n. Put P = 1 —
24%°,5,0(n)g and p(z) = 12/(2miz). The purpose of this problem and the
two that follow is to prove the identity

P|S=P+p (1)

where | = |2. Put

g(z JrZZszrn )72). (2)

m#0 n€Z

(The order of summation is important here, because the sum over (m, n) is not
absolutely convergent.) Since g = (72/3)P, the identity P |S = P+ p amounts
to

“?9(=1/2) = g(2) — (2mi)/=. (3)

Put ay,,, = (mz + n)~? and show that (3) is equivalent to the relation

Z(Z am,n) - Z Z Am, n = 27771)/ (4)

neZ m#0 m#0 neZ

(Hint: Replace z by —1/2 in (2) and multiply both sides by 2~2. Then detach
the term n = 0 from the sum over n and add the term m = 0 to the sum over
m.

Problem 2

This problem is a continuation of Problem 1. Put
b =(mz+n)"Ymz+n+1)"t=(mz+n)"t—(mz+n+ 1"t (5)

(a) Show that the double series > nez (Dm0 @mn — b)) converges abso-
lutely. (Hint: Show that |am n — bmn| < |mz+n|™ 3 +|mz+n+1|73)
(b) It follows from (a) that

DD @ =) = 3 (Dt~ bunn)

n€Z m#0 m#0 neZ

whence (4) is equivalent to >Z . 7(3 . 200mn) — 2ms0(Xnezbmn) =
—(2mi)/z. Show that 3 4(3_,czbmn) = 0, and deduce that (4) is equivalent

to
Z men = —(2mi)/z. (6)

neZ m7#0

The next problem outlines a proof of (6) and hence completes the proof for
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(D).
Problem 3
In this problem we use the notation

e2iz +1 1+ e—2iz
co (Z) Ze2zz _ 1 ¢ 1— e—21z ( )

for z € C\ (2mi)Z. Our aim is to prove (6).
(a) Put ¢y = (m+n/2)"t + (=m +n/z)~1. Show that (6) is equivalent

Z(Z Cmn — Cmynt1) = —278 (8)

nezZ m>1

(Hint: ZneZ(ZW#O binn) =D onez (Zm21(bm7n + b_m,n)). Why?)

(b) Prove the identity Y., <, (m+w)™' + (—m +w)™ = 7w cot(rw) —w™?!
for w e C\ Z. -

(¢) By applying (b) with w = n/z and w = (n + 1)/z show that (8) is
equivalent to

to

lim (d_p, — dy) = —2mi, (9)

n—oo
where d,, = wcot(mn/z) — z/n.
(d) Show that lim, o di,, = £mi and conclude that (9) does hold. (Hint:
If z € H then —1/z € H and therefore the real part of 2min/z is negative or
positive according as n is negative or positive. Now use the two expressions
for cot(z) in equation (7).)

Problem 4

The point of this problem is to show that [SLy(Z) : T'o(4)] = 6, a fact that
was needed in our derivation of Jacobi’s formula. Fix a prime p.

(a) Show that a vector (¢, d) € Z? is the bottom row of a matrix in SLa(Z)
if and only if ged(c,d) = 1.

(b) Given §, ¢’ € SLo(Z) with entries a, b, ¢, d and @, b, ¢, d’ respectively,
show that To(p™)d = To(p™)d’ if and only if ed’ — ¢/d = 0 mod p™.

(c¢) With notation as in (b), deduce that I'g(p™)d = I'o(p™)d’ if and only if
there is an integer u prime to p such that (¢/,d") = (uc, ud).

(d) Deduce that

an _ pQ(n—l)
(p—1)pr—t

Then take p = n = 2 to get the desired value for [SLa(Z) : To(4)].
(e) Although we did not need explicit right coset representatives for T'g(4)
in SLy(Z) for anything we did, show that (c) gives an effective method for

[SLy(Z) : To(p")] = =p"(1+1/p).
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choosing a set of coset representatives. For example, show that
1 0 0 -1 10
0 1)’\1 o)/)'\1 1)’
0 -1 1 1 -1 -1
1 —-1/°\1 2/)7\ 2 1
is one possible choice.

Problem 5

By using Problem 4 together with the Chinese Remainder Theorem, prove the
more general formula

[SLa(2Z) = To(N)] = N [[(1+1/p)
pIN

for any positive integer V.

Problem 6

This problem gives a proof that the only modular form of weight 2 for SLs(Z)
is 0.

(a) Observe that [SLa(Z) : T'0(2)] = 3, and deduce that M3(2) has dimen-
sion 1.

(b) Show that the modular form D =1+ 5" ., 0odda(n)g"™ is not invariant
under S, and deduce that Ms(1) = {0}. -

7 Supplementary Problems

A function f is called holomorphic at zq if lim,_, ., f(zz):igzo) exists. A meromor-

phic function is a function that is holomorphic except at a set of isolated points
that are the zeros of 1/f, and they are called the poles of f. The order of a
pole of f at zp is the smallest integer n such that (z — zo)™f(z) is holomorphic
at zo. If f has a zero at zp, then ord,,(f) is defined as ord,,(1/f). If f has nei-
ther zero nor a pole, then the order equals zero. The order of a modular form f
at 400 is the smallest n such that a, (nth Fourier coefficient) is nonzero. Define
F={zeH:—J<z<iandz| >1}U{z€H: |z/=1and — 5 <z <0},
where x is the real part of z. Let f be a modular form of weight k, then

1 1 k
ordiss (f) + §Ordz(f) + gordezm/g (f)+ E ord,, (f) = 13
20ES
20ski 6213

This is called the Valence formula, which we will use in the next few exercises.
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Problem 1

A modular form is a cusp form if the constant Fourier coefficient in its Fourier
3 2

series expansion is zero. Prove A(z) = Efng"' is a cusp form of weight 12 that

is nowhere vanishing on the upper half-plane.

Problem 2

Use the valence formula to determine the dimension of My (SLy(Z)), denoted
My, for k =0, 2, 4, 6, 8, 10. Moreover, determine the dimension of Sy (the
space of cusp forms of weight k) in terms of the dimension of M. Use the A
modular form to prove Sy = My _1s.

Problem 3
k

Use the previous problem to prove dimmy < [{3] for £ = 2 mod 12 and is
bounded by [£] + 1 otherwise. Deduce a similar formula for dim Sj,. Then
determine a basis in terms of E$EQ for a, b satisfying certain simple property.

Lastly, check that M = ®Mj, (direct sum) is a ring and is isomorphic to Clz, y].

Problem 4

Prove the Valence Formula. A simple closed curve is a curve that does not
intersect itself and start and end at the same point. If a function is holomorphic
on a disk containing a simple closed piecewise smooth curve C, then the integral
around C'is zero. You may also use the theorem that if f is meromorphic inside
and on a simple closed piecewise-smooth curve C' and has no zeros or poles on
C, then the integral of f'(z)/f(z) around C equals 27 times number of zeros
minus number of poles, counting multiplicity.

Problem 5

Use the integral representation of the Fourier coefficient to prove that there
exists some constant C' > 0 such that for the nth Fourier coefficient a,, of a
cusp form f, |a,| < Cn*/?  where C only depends on f.

Problem 6

2miz

Let ¢ = e*™*, and consider the function f(z) = ¢[],»,(1 — ¢")**. You may
assume the following facts:

1. f has a Fourier series representation.
2. The second Eisenstein series satisfies Ep(2) =1 —24>"" | o1(n)q™.
3. For all z in the upper half-plane, Ey(—1) = 22 E5(z) + &.

Prove f = A. The Fourier coefficients of A are called the Ramanujan tau
function, and satisfies many amazing identities (e.g. 7(n) = o11(n) mod 691).

49



