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1
August 20, 2024

Exercise 1
Show that if x is a rational number which is not an integer, then xx is irrational.

Solution Let x =
m

n
for m, n ∈ Z with gcd(m,n) = 1 and n ̸= 1. For the sake of

contradiction, suppose xx is rational. Then(m
n

)m
n

=
p

q

for some p, q ∈ Z with gcd(p, q) = 1. Then(m
n

)m
=

(
p

q

)n

mm

nm
=

pn

qn

mm · qn = pn · nm

Since mm | mm · qn = pn · nm and gcd(m,n) = 1, mm | pn. Similarly, since
pn | pn · nm = mm · qn and gcd(p, q) = 1, pn | mm. This gives pn = mm, and
qn = nm.

Let m’s prime factorization be m = pe11 pe22 · · · pekk . Then, since pn = mm =

pe1m1 pe2m2 · · · pekmk and all pis are prime, n should divide all exponents of pis. That
is, n | eim for all i. Since gcd(m,n) = 1, n | ei for all i. This gives m = αn for
some α ∈ Z. Similarly, n = βm for some β ∈ Z. Here, β ̸= 1 since n couldn’t be
1. So β ≥ 2, and n ≥ m. However, we then have

m = αn ≥ αm,

which forces α = 1 and m = 1. This gives pn = 11 = 1, so p = 1 and n = 1, which
is a contradiction. Therefore, xx is irrational.
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Exercise 2
Show that no set of nine consecutive integers can be partitioned into two sets
with the product of the elements of the first set equal to the product of the
elements of the second set.

Solution For the sake of contradiction, suppose it is possible to partition nine
consecutive sets with the same product of elements in each set, and let this product
be n. Then the product of nine elements are n2.

Claim. The prime factorization of n should be consisted of only 2, 3, 5, and 7.

Suppose p | n for some p ≥ 11. Then, the two sets should both contain a multiple
of p, which is impossible because there are only nine consecutive elements.

Therefore, n is of the form n = 2a · 3b · 5c · 7d.

Claim. The exponents should satisfy:

4 ≤ a ≤ 7

b = 2

c = 1

d = 1.

Notice that 7 | n2 since n2 is a product of nine numbers, which will always contain
a multiple of 7. So 2d ≥ 1, so d ≥ 1 since d is an integer. However, if d ≥ 2, then
74 | n2, which is impossible unless one of the nine numbers is divisible by 73. In
this case, it is impossible to partition the nine numbers with the same product of
elements. Therefore d = 1. Similar argument holds for c.

For b, since consecutive nine numbers always contains three multiples of 3 and one
multiple of 9, 2b ≥ 4. However, if b ≥ 3, 36 | n2, which forces the multiple of 9 to
be a multiple of 81 since the other two multiples of 3 couldn’t be multiples of 9.
If one of the nine number is a multiple of 81, then it is impossible to partition the
nine numbers with the same product of elements. Therefore, b = 2.

For a, since consecutive nine numbers always contains four multiples of 2, two
multiples of 4, and one multiple of 8, 2a ≥ 7. This gives a ≥ 4. If b ≥ 8, then
216 | n2, which is only possible when one of the nine numbers is a multiple of 29.
But if this is the case, it is impossible to partition the nine numbers with the same
product of elements. Therefore a ≤ 7.

We test the four cases: n = 5040, 10080, 20160, 40320. This gives

n2 ≤ (40320)2 = 1, 625, 702, 400 <
15!

6!
= 7 · 8 · · · · 15,
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so n ≤ 15. Testing the numbers below or equal to 15, we see that it is impossible
to partition consecutive nine numbers to have the same product of elements.
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Exercise 3
Consider a function f : R3 → {0, 1, 2}. Show that there exists i ∈ {0, 1, 2}
such that for any x ∈ R>0, there exist points P , Q ∈ f−1(i) such that the
Euclidean diatance between P and Q is x. That is, of the preimages of 0, 1,
2, one of these preimages attains all distances.

Solution We prove by contradiction. Suppose ∀i ∈ {0, 1, 2} and for some r ∈ R>0,
∀A, B ∈ f−1({i}), |A−B| ≠ r.

WLOG let f
(
(0, 0, 0)

)
= 0. Then the sphere x2 + y2 + z2 = r2 should contain

points mapping only to 1 or 2. WLOG let f
(
(0, 0, r)

)
= 1. Then the circle

x2 + y2 =
3

4
r2, z =

r

2

should consist only points mapping to 2 since any point on this circle has distance
r from both the origin and (0, 0, r).

Now, take one point P0

(
x0, y0,

r

2

)
with x2

0 + y20 =
3

4
r2. Let Q0 be the point

Q0

(
x0 · eiπ/3, y) · eiπ/3,

r

2

)
. Then Q is on the circle defined above. Also, PQ = r

because the points P , Q, and R(0, 0, r/2) form an equilateral triangle. This gives
a contradiction and completes the proof.
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Exercise 4
Show that there are no nonconstant functions f : Z>0 → Z>0 satisfying

xf(y) + yf(x) = (x+ y)f(x2 + y2).

Solution We prove by contradiction. Suppose there exists a function f . Take two
positive integers a and b, and define a recursive sequence {bn} with b0 = b and
bn = a2 + b2n−1 for n ≥ 1. WLOG let f(a) ≤ f(b). If f(a) ̸= f(b), since

f(b1) = f(a2 + b2) =
a

a+ b
f(b) +

b

a+ b
f(a),

we have f(a) < f(b1) < f(b). We repeat the process and get

f(a) < · · · < f(b2) < f(b1) < f(b).

However, repeating this f(b) − f(a) times shows that it is impossible to have a
function f since the range of f is positive integers, but more that f(b) − f(a)

positive integers fit in between f(a) and f(b). This gives f(a) = f(b). Since a

and b were chosen arbitrarily, this implies that f is a constant function, which is
a contradiction.
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2
August 27, 2024

Exercise 1
Show that | sin(nx)| ≤ n| sin(x)| for any real number x and positive integer n.

Solution We use induction. The base case n = 1 obviously works.

Let k ∈ N, and | sin(kx)| ≤ k| sin(x)|. We have∣∣sin ((k + 1)x
)∣∣ = | sin(kx+ x)|

= | sin(kx) cos(x) + cos(kx) sin(x)|

≤ | sin(kx)|| cos(x)|+ | cos(kx)|| sin(x)|

≤ | sin(kx)|+ | sin(x)|

≤ k| sin(x)|+ | sin(x)|

= (k + 1)| sin(x)|

since the absolute value of the cosine function is bounded above by 1. Therefore,
this completes the proof.
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Exercise 2
Gina starts with a stack of n coins. On each of her turns, she selects one stack
of coins that has at least two coins and splits it into two stacks, each with at
least one coin. Her score for that turn is the product of the sizes of the two
resulting stacks (for example, if she splits a stack of 5 coins into a stack of 3
coins and a stack of 2 coins, her score would be 3 ·2 = 6). She continues taking
turns until all stacks have only one coin in them. Her score at the end is the
sum of her scores in each turn. Prove that Gina’s final score is the same no
matter how she splits the stacks.

Solution We take a stronger claim. If Gina starts with i coins, let Gina’s points
be Gi.

Claim. Gn =
(n− 1)n

2
.

If n = 2, then Gina’s point is 1 · 1 = 1 since the only split possible is splitting to 1

and 1.

We divide cases into odd and even. Assume that for i = 2, 3, . . . , 2k, Gina’s point

is
(i− 1)i

2
. Then,

G2k+1 = (1 · 2k +G1 +G2k) + · · ·+
(
k · (k + 1) +Gk +Gk+1

)
=

k∑
j=1

(
j · (2k + 1− j) +Gj +G2k+1−j

)

=

k∑
j=1

(
(2k + 1)j − j2 +

(j − 1)j

2
+

(2k − j)(2k + 1− j)

2

)

=

k∑
j=1

2k(2k + 1)

2

=
2k(2k + 1)

2
.
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Now, suppose that for i = 2, 3, . . . , 2k + 1, Gina’s point is
(i− 1)i

2
. Then,

G2k+2 =
(
1 · (2k + 1) +G1 +G2k+1

)
+ · · ·+

(
(k + 1) · (k + 1) +Gk+1 +Gk+1

)
=

k+1∑
j=1

(
j · (2k + 2− j) +Gj +G2k+2−j

)

=

k+1∑
j=1

(
(2k + 2)j − j2 +

(j − 1)j

2
+

(2k + 1− j)(2k + 2− j)

2

)

=
(2k + 1)(2k + 2)

2

This completes the proof by induction.
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Exercise 3
Prove that for any n ≥ 1 a 2n × 2n checkerboard with 1 × 1 corner square
removed can be tiled by pieces that are congruent to a 2×2 checkerboard with
a 1× 1 piece removed.

Solution We use induction. The base case n = 1 is obvious. Suppose that n = k

holds. That is, a 2k × 2k checkerboard with 1 × 1 corner removed can be tilted
by pieces that are congruent to a 2× 2 checkerboard with a 1× 1 piece removed.
Then, we can fill in the 2k+1 × 2k+1 checkerboard with 1× 1 corner removed like
in the figure below:

The blue, red, green, yellow figures are 2k × 2k checkerboard with 1 × 1 corner
removed, and the purple is 2 × 2 checkerboard with 1 × 1 corner removed. Since
blue, red, green, and yellow figures can be filled up with 2× 2 checkerboard with
1 × 1 corner removed, it is possible to fill a 2k+1 × 2k+1 checkerboard with 1 × 1

corner removed. This completes the proof.
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Exercise 4
Let n be a positive integer. The cells of a 2n× 2n grid are painted with one of
four colors. Suppose that every 2× 2 block of squares contains all four colors.
Prove that the four corners of the chessboard are painted with different colors.

Solution Let the colors be red, green, blue, and yellow. We use induction. The
base case n = 1 obviously works. Assume that the four corners should be different
for 2k × 2k grid. Below is a drawing for k = 3.

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

Let (m,n) be the cell at mth row and nth column. WLOG let (1, 1) red, (2, 1)
blue, (1, 2) yellow, and (2, 2) green.

We have that one of (1, 3) and (2, 3) should be red, and the other should be blue.
Then, one of (1, 4) and (2, 4) should be yellow, and the other should be green.
Repeating this, if i is odd, then (1, i) and (2, i) should be red and blue, and if i is
even, then (1, i) and (2, i) should be yellow and green. This gives that (1, 2k + 2)

can never be red since it is either yellow or green. Similarly, (2k + 2, 1) can never
be red.
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1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

Suppose (2k + 2, 2k + 2) is red. Then since (2k + 1, 2k + 1) and (2k + 1, 2k + 2)

can’t be red, either (2k, 2k + 1) or (2k, 2k + 2) should be red. Repeating this, we
get either (i, 2k + 1) or (i, 2k + 2) should be red if and only if i is even. So one of
(2, 2k+1) and (2, 2k+2) is red. We also had that one of (1, 2k+1) and (2, 2k+1)

is red. However, if (2, 2k + 1) is not red, then (1, 2k + 1) and (2, 2k + 2) should
both be red, which is impossible. Therefore, (2, 2k+1) is red. Similarly, (2k+1, 2)

is red. However, this is a contradiction for the case n = k since the 2k× 2k tile in
the middle has two red corners. This completes the proof.
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Exercise 5
Show that for all n > 3 there exists an n-gon whose sides are not all equal and
such that the sum of the distances from any interior point to each of the sides
is constant.

Solution For n even, construct an n-gon by extending two parallel sides from a
regular n-gon works. This works becase for any interior point, the sum of the
distance to one side and the distance to the parallel opposite side is a constant.
The figure below is an example of n = 6.

Claim. For n > 3 odd, note that for an regular n-gon, the distance from any
interior point to each of the sides is constant.

Let the distances be d1, d2, . . . , dn, and one side length r, a constant. Then the
area of the regular n-gon is

S = n · 1
2
· r ·

(
1

2
r · tan

(
90◦ − 180◦

n

))
,

which is a constant. Since we have

S =
1

2
r(d1 + d2 + · · ·+ dn),

d1 + d2 + · · · + dn should be a constant. To construct an n-gon whose sides are
not all equal, we cut out two small triangle by drawing two vertical lines at very
right and very left. Below is a figure for the case n = 5.

This 5-gon is generated by cutting off the sides of an equilateral triangle. Let
the distances to two new sides be dn+1 and dn+2. Then for any interior point,
d1 + d2 + · · ·+ dn is a constant, and dn+1 + dn+2 is a constant, so the sum of the
distances is equal. This completes the proof.
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3
September 3, 2024

Exercise 1
In a group of six people, show that there are either three people any two of
whom aren’t friends, or three people any two of whom are friends.

Solution Define the graph with six vertices by A, B, . . . , F . Let eAB be the edge
connecting A and B, and so on. Color the edges to red if the two people connecting
are friends, and blue if they’re not. Then the problem changes to

Claim. Prove that there is a triangle of three vertices which sides are all the
same color.

In A’s point of view, there are five edges connecting A and some other vertex.
Then, at least three of them should be the same color. WLOG let this color be
red, and let the three edge be eAB , eAC , and eAD.

Consider the three edges eBC , eCD, eDB . If any of these are red, then there is
a triangle of all sides having red color (for example, if eBC is red, then triangle
ABC has all sides of red color). If none of these are red, then triangle BCD has
all sides of blue color. This completes the proof.
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Exercise 2
Given nine points inside a unit square, show that some three of them form a
triangle whose area does not exceed 1/8.

Solution Divide the unit square to four congruent squares with side lengths 1/2.
Then in one of them, three points should be inside. This square has area 1/4.

For any triangle, construct a smallest rectangle, whose sides are parallel to the
axes, containing the triangle. This can be done in two ways:

1. If one of the sides are parallel to the axes, make the side coincide with one
side of the rectangle and the opposite point lie on the opposite side of the
square

2. If none of the sides are parallel to the axes, make one vertex coincide with
one vertex of the square and the other two vertices of the two triangles lie
on the edges of the square not containing the first vertex of the triangle.

The diagram for the two cases are below.

A

B

CH

P Q

A

B

C

P Q

R

F

Claim. The area of the triangle is at most half of the area of the rectangle.

For the first case, let H be the feet of altitude from B to AC. Then since

SABH = SABP and SCBH = SCBQ,

we have SABC =
1

2
SAPQC .

For the second case, let F be the intersection of two lines: one passing B and
parallel to AP , and one passing C and parallel to AR. Then we have

SQBC = SFBC

SABP + SACR ≥ SABFC

15
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so SAPQR ≥ 2SABC .

Therefore, in the small square containing three points, the triangle constructed
by these three points should have area at most the half of the area of the small

square, which is
1

2
· 1
4
=

1

8
. This completes the proof.
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Exercise 3
A chess player trains by playing at least one game per day, but, to avoid
exhaustion, no more than 12 games a week. Prove that there is a group of
consecutive days in which he plays exactly 20 games.

Solution Let an be the number of games played on days 1 to n. Then

a7 ≤ 12

a14 − a7 ≤ 12

...

a77 − a70 ≤ 12.

Adding up all these gives a77 ≤ 132.

Claim. There exists i, j ∈ Z+ such that ai+j = ai + 20.

Consider the set A = {ai | 1 ≤ 1 ≤ 77}. Then A ⊂ {1, 2, . . . , 132}. Now, construct
the set B = A+ 20 = {ai + 20 | 1 ≤ i ≤ 77}. Then B ⊂ {21, 22, . . . , 152}. Now,

|A ∪B| = |A|+ |B| − |A ∩B| = 77 + 77− |A ∩B| = 154− |A ∩B|,

but since

A ∪B ⊂ {1, 2, . . . , 132} ∪ {21, 22, . . . , 152} = {1, 2, . . . , 152},

|A ∪ B| ≤ 152. Therefore 154− |A ∩ B| ≤ 152, so |A ∩ B| ≥ 2, which means that
there is a common element in both A and B. Let this value be k, where

k = am for some 1 ≤ m ≤ 77

= ai + 20 for some 1 ≤ i ≤ 77.

Let m = i + j. (Note that we can do this since {an} is strictly increasing and
ai < am, so i < m.) Then ai+j = ai + 20. This completes the proof.
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Exercise 4 (Putnam 1990)
Prove that any convex pentagon whose vertices (no three of which are collinear)
have integer coordinates must have area greater than or equal to 5/2.

Lemma : Pick’s Theorem

A polygon whose vertices have integer coordinates has area

I +
B

2
− 1

where I is the number of lattice points in the interior and B is the number
of lattice points on the boundary.

Solution Since B ≥ 5, it suffices to prove that I ≥ 1 or B ≥ 7.

Claim. Any convex pentagon whose vertices have integer coordinates contain at
least one interior lattice point or has at least 7 lattice points on the boundary.

Lattice points (a, b) can be divided to four kinds: either a is odd or even, and
either b is odd or even. By Pigeonhole, there exists at least two lattice points of
the same parity. WLOG let these lattice points A and B be the form (even, even).

We divide cases by the following:

1. The other three points has different parities besides (even, even).

2. Some of the other two points have the same parity.

For the first case, we first can find another lattice point on the boundary, the
midpoint of AB. Call this point M .

• If M has parity (even, even), then the midpoints of AM and BM are also
on the boundary, so B ≥ 8.

• If M has parity other that (even, even), then the midpoint of M and the
point on the boundary that has same parity with M is inside the pentagon,
so I ≥ 1.

For the second case, let the two points (other than A and B) that have the same
parity be C and D. Then the midpoint of AB and the midpoint of CD are both
on the boundary, so B ≥ 7.

This completes the proof.
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Exercise 5 (Putnam 1994)
Let A and B be 2×2 matrices with integer entries such that A, A+B, A+2B,
A + 3B, and A + 4B are all invertible matrices whose inverses have integer
entries. Show that A+5B is invertible and that its inverse has integer entries.

Solution We first start with a claim.

Claim. det(A) is either 1 or −1.

Since A has integer matrices, det(A) is an integer. Since A−1 also has integer
matrices, det(A−1) = 1/det(A) is also an integer. Therefore det(A) should be
either 1 or −1.

Similarly, det(A), det(A + B), . . . , det(A + 4B) are all 1 or −1. By Pigeonhole,
at least three of these should have the same value. Let this value be k ∈ {−1, 1}.
Let

A =

(
a1 a2
a3 a4

)
and B =

(
b1 b2
b3 b4

)
.

Then, for n ∈ Z+,

det(A+ nB) =

∣∣∣∣a1 + nb1 a2 + nb2
a3 + nb3 a4 + nb4

∣∣∣∣ = an2 + bn+ c

for some integer constants a, b, and c. Then the quadratic equation

an2 + bn+ c = k

has three distinct integer roots (from {0, 1, 2, 3, 4}). However, a quadratic equation
can have at most two distinct roots, this gives a = b = 0 and c = k. Therefore, this
equation has infinitely many roots (i.e. all integers), and det(A+ 5B) = k. Since
k is either −1 or 1, A+ 5B is invertible and that its inverse has integer entries.
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Exercise 6 (Putnam 2006)
Prove that, for every set X = {x1, x2, . . . , xn} of n real numbers, there exists
a non-empty subset S of X and an integer m such that∣∣∣∣∣m+

∑
s∈S

s

∣∣∣∣∣ ≤ 1

n+ 1
.

Solution The problem is equivalent to proving that
∑
s∈S

s has distance at most

1/(n+1) from its closest integer. Define a sequence {an} by ak =

k∑
i=1

xi for k = 1,

2, . . . , n, and define the sequence {In} by the union of intervals

Il =
⋃
p∈Z

[
p+

l − 1

n+ 1
, p+

l

n+ 1

)
l = 1, 2, . . . , n+ 1.

If ak ∈ I1 or In+1 for some k, then we are done. Suppose none of the aks are
in I1 or In+1. Then since a1, . . . , an should be in I2, . . . , In, by Pigeonhole, at
least two of aks should be in the same union of intervals. That is, there exists i

and j ∈ {1, 2, . . . , n} such that ai ∈ Iq and aj ∈ Iq for some q ∈ {1, 2, . . . , n+ 1}.
WLOG let i > j. Then

{ai − aj} = {aj+1 + aj+2 + · · ·+ ai} ≤ 1

n+ 1

where {x} = x−⌊x⌋ indicates the fractional part of x ∈ R. Since {aj+1, aj+2, . . . , ai}
is nonempty and is a subset of X, there exists a nonempty subset S of X such that{∑

s∈S

s

}
≤ 1

n+ 1
,

which is equivalent to ∣∣∣∣∣m+
∑
s∈S

s

∣∣∣∣∣ ≤ 1

n+ 1

for some integer m.
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4
September 10, 2024

Exercise 1
Find all real polynomials P satisfying

(x+ 1)P (x) = (x− 10)P (x+ 1)

for all x.

Solution Substituting x = −1 gives 0 = −9P (0), so P (0) = 0, and substituting
x = 10 gives 11P (10) = 0, so P (10) = 0.

Claim. All integers between 0 and 10 are also roots.

Substitute x = 1. Then 2P (1) = −9P (2), but since P (1) = 0, P (2) = 0. Now,
substituting x = 2 gives 3P (2) = −8P (3), so P (3) = 0. Repeating this until x = 9

gives
P (0) = P (1) = · · · = P (9) = P (10) = 0.

Claim. Integers from 0 to 10 are the only roots.

Suppose there exists a root a ∈ C such that a /∈ {0, 1, . . . , 10}. Then substituting
x = a gives

(a+ 1)P (a) = (a− 10)P (a+ 1)

= 0

P (a+ 1) = 0.

Repeating this process gives infinitely many roots, namely a, a+1, a+2, . . . . This
is a contradiction, so there does not exist a root a ∈ C such that a /∈ {0, 1, . . . , 10}.

Let
P (x) = xe0(x− 1)e1 · · · (x− 10)e10 .

Then

(x+ 1)P (x) = (x+ 1)xe0(x− 1)e1 · · · (x− 10)e10

(x− 10)P (x+ 1) = (x+ 1)e0xe1 · · · (x− 9)e10(x− 10).

Comparing the exponents gives 1 = e0 = e1 = · · · = e9 = e10 = 1. Therefore,

P (x) = cx(x− 1) · · · (x− 10).

where c is a constant.
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Exercise 2 (Putnam 2010)
Find all pairs of polynomials p(x) and q(x) with real coefficients that satisfy

p(x)q(x+ 1)− p(x+ 1)q(x) = 1

for all x.

Solution Substituting x− 1 gives

p(x)q(x+ 1)− p(x+ 1)q(x) = 1

p(x− 1)q(x)− p(x)q(x− 1) = 1.

Subtracting the second from the first, we get

p(x)q(x+ 1)− p(x+ 1)q(x)− p(x− 1)q(x) + p(x)q(x− 1) = 0.

So

p(x)q(x+ 1) + p(x)q(x− 1) = p(x+ 1)q(x) + p(x− 1)q(x)

p(x)
(
q(x+ 1) + q(x− 1)

)
= q(x)

(
p(x+ 1) + p(x− 1)

)
.

Claim. gcd
(
p(x), q(x)

)
= 1.

Suppose by contradiction, gcd
(
p(x), q(x)

)
̸= 1. Then there exists some linear

factor x− a both dividing p(x) and q(x), where a ∈ C. However, then

x− a | p(x)q(x+ 1)− p(x+ 1)q(x) = 1,

which is a contradiction. So gcd
(
p(x), q(x)

)
= 1.

Claim. p(x) and q(x) are linear.

We have

p(x) | p(x)
(
q(x+ 1) + q(x− 1)

)
= q(x)

(
p(x+ 1) + p(x− 1)

)
.

Since gcd
(
p(x), q(x)

)
= 1, p(x) |

(
p(x + 1) + p(x − 1)

)
. Let p(x) = anx

n +

an−1x
n−1 + · · ·+ a1x+ a0. Then

p(x+ 1) + p(x− 1)

p(x)
=

2anx
n + · · ·

anxn + · · ·
.

Since this value should be a polynomial, it is 2. So p(x + 1) + p(x − 1) = 2p(x).
Rearranging gives

p(x+ 1)− p(x) = p(x)− p(x− 1)
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for all x. Therefore, p(x + 1) − p(x) is a constant, and p(x) is linear. Similarly,
q(x) is also linear.

Let p(x) = ax+ b and q(x) = cx+ d. Plugging in to the original formula gives

p(x)q(x+ 1)− p(x+ 1)q(x) = (ax+ b)(cx+ c+ d)− (ax+ a+ b)(cx+ d)

= bc+ bd− ad− bd

= bc− ad

= 1.

Therefore, the pairs of polynomials that satisfy the equation is (ax + b, cx + d),
where bc− ad = 1.
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Exercise 3 (Putnam 2003)
Let f(z) = ax4 + bz3 + cz2 + dz + e = a(z − r1)(z − r2)(z − r3)(z − r4) where
a, b, c, d, e are integers, a ̸= 0. Show that if r1 + r2 is a rational number and
r1 + r2 ̸= r3 + r4, then r1r2 is a rational number.

Solution By Vieta,

r1 + r2 + r3 + r4 = − b

a
,

which is rational. So r3 + r4 is rational. Then,

r1r2 + r1r3 + r1r4 + r2r3 + r2r4 + r3r4 =
c

a

is rational by Vieta again. So

r1r2 + r1r3 + r1r4 + r2r3 + r2r4 + r3r4 − (r1 + r2)(r3r4) = r1r2 + r3r4

is also rational. Let this value be k. Now, we have

−d

a
= r1r2r3 + r1r2r4 + r1r3r4 + r2r3r4 = r1r2(r1 + r2) + r3r4(r3 + r4)

also rational. Then,

−d

a
− (r3 + r4)k = r1r2(r1 + r2) + r3r4(r3 + r4)− (r3 + r4)(r1r2 + r3r4)

= r1r2(r1 + r2 − r3 − r4)

is rational. Since both r1+r2 and r3+r4 are rational, r1+r2−r3−r4 are rational,
and this gives r1r2 rational. This completes the proof.
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Exercise 4 (Putnam 2018)
Let n be a positive integer, and let fn(z) = n+(n−1)z+(n−2)z2+ · · ·+zn−1.
Prove that fn has no roots in the closed unit disk {z ∈ C : |z| ≤ 1}.

Solution Note that (z − 1)fn(z) = zn + zn−1 + · · ·+ z − n. Suppose fn has a root
|z| such that |z| ≤ 1. Then zn + zn−1 + · · ·+ z − n = 0. We have

|zn + zn−1 + · · ·+ z| ≤ |zn|+ |zn−1|+ · · ·+ |z|

≤ n

by the triangular inequality. Equality occurs when z = 1. However, since fn(1) ̸=
0, fn has no roots in the closed unit disk.
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5
September 17, 2024

Useful Results
Theorem : Eisenstein’s Criterion

Let a0, a1, . . . , an be integers and p be a prime. Then the polynomial
anx

n+an−1x
n−1+ · · ·+a1x+a0 cannot be factored into the product of two

non-constant polynomials if p divides each of a0, a1, . . . , an−1, p does not
divide an and p2 does not divide a0.

Theorem : Hensel’s Lemma

Let f(x) be a polynomial with integer coefficients, and let m ≤ k be integers.
If r is an integer such that

f(r) ≡ 0 (mod pk), and f ′(r) ̸≡ 0 (mod p)

then there exists an integer s such that

f(s) ≡ 0 (mod pk+m), and r ≡ s (mod pk).
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Exercise 1 (Putnam 2007)
Let f be a non-constant polynomial with positive integer coefficients. Prove
that if n is a positive integer, then f(n) divides f(f(n)+1) if and only if n = 1.

Solution (⇐) Suppose n = 1.

Claim. f(1) | f(f(1) + 1).

Note that since f is a polynomial with integer coefficients, a− b | f(a) = f(b). Let
a = f(1) + 1 and b = 1. Then

a− b | f(a)− f(b)

(f(1) + 1)− 1 | f(f(1) + 1)− f(1)

f(1) | f(f(1) + 1)− f(1),

so f(1) | f(f(1) + 1)− f(1) + f(1) = f(f(1) + 1).

(⇒) Suppose f(n) | f(f(n) + 1). Since f(n) = (f(n) + 1)− 1 | f(f(n) + 1)− f(1),
f(n) | f(1). Assume n > 1. Since f is a polynomial with positive coefficients,
f(x) is strictly increasing on x ∈ R>0. This gives f(n) > f(1), which contradicts
f(n) | f(1). Therefore n = 1.
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Exercise 2
Let p be a prime number. Show that f(x) = xp−1 + xp−2 + · · · + x + 1 is
irreducible.

Solution Let x = y + 1. Then

f(x) = f(y + 1)

= (y + 1)p−1 + (y + 1)p−2 + · · ·+ (y + 1) + 1

= yp−1 +

((
p− 1

1

)
+

(
p− 2

0

))
yp−2 +

((
p− 1

2

)
+

(
p− 2

1

)
+

(
p− 3

0

))
yp−3 + · · ·

= yp−1 +

p−2∑
k=1

((
p− 1

k

)
+

(
p− 2

k

)
+ · · ·+

(
k

k

))
yk + p.

Claim. p divides each of the coefficients from y1 to yp−2.

By the hockey-stick identity, we have(
p− 1

k

)
+

(
p− 2

k

)
+ · · ·+

(
k

k

)
=

(
p

k + 1

)
.

Since p is prime, p |
(

p
k+1

)
. This proves the claim. Thus f(x) is irreducible by

Eisenstein’s criterion.
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Exercise 3 (AMO 1974)
Let a, b, and c denote three distinct integers, and let P denote a polynomial
having integer coefficients. Show that it is impossible that P (a) = b, P (b) = c,
and P (c) = a.

Solution Suppose there exists a polynomial with integer coefficients such that
P (a) = b, P (b) = c, and P (c) = a. Then

a− b | P (a)− P (b) = b− c

b− c | P (b)− P (c) = c− a

c− a | P (c)− P (a) = a− b,

so
a− b | b− c | c− a | a− b,

and |a − b| = |b − c| = |c − a|. Let this value be k. Then a − b, b − c, and
c − a can be either k or −k. However, none of these combinations can make
(a− b) + (b− c) + (c− a) = 0.

Therefore, there doesn’t exist a polynomial with integer coefficients such that
P (a) = b, P (b) = c, and P (c) = a.
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Exercise 4 (Russia 2003)
The side lengths of a triangle are the roots of a cubic polynomial with rational
coefficients. Prove that the altitudes of this triangle are roots of a polynomial
of sixth degree with rational coefficients.

Solution In a triangle ABC, let the three side lengths be a, b, and c. Then by
Vieta, a+ b+ c, ab+ bc+ ca, and abc are rational. Let ha, hb, hc be the altitudes
from A to BC, B to CA, and C to AB, respectively.

Claim. The square of the area of triangle is rational.

Let s be the semiperimeter. By Heron, we have S =
√
s(s− a)(s− b)(s− c).

Note that since a + b + c is rational, s is rational. It is sufficient to prove that
(s− a)(s− b)(s− c) is rational. Expanding gives

(s− a)(s− b)(s− c) = s3 − (a+ b+ c)s2 + (ab+ bc+ ca)s− abc

and this is rational since all of s, a+ b+ c, ab+ bc+ ca, and abc are rational.

Claim. The six degree polynomial (x2 − h2
a)(x

2 − h2
b)(x

2 − h2
c) has rational

coefficients.

We have

h2
a =

4S2

a2

h2
b =

4S2

b2

h2
c =

4S2

c2

with S2 rational. Expanding the sixth degree polynomial gives

(x2−h2
a)(x

2−h2
b)(x

2−h2
c) = x6−(h2

a+h2
b+h2

c)x
4+(h2

ah
2
b+h2

bh
2
c+h2

ch
2
a)x

2−h2
ah

2
bh

2
c

For each of the (absolute valeus of) coefficients,

h2
a + h2

b + h2
c = 4S2

(
1

a2
+

1

b2
+

1

c2

)

h2
ah

2
b + h2

bh
2
c + h2

ch
2
a = 4S2

(
1

a2b2
+

1

b2c2
+

1

c2a2

)

h2
ah

2
bh

2
c = 4S2

(
1

a2b2c2

)
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and these are all rational since

4S2

(
1

a2
+

1

b2
+

1

c2

)
= 4S2

(
(ab+ bc+ ca)2 − 2abc(a+ b+ c)

(abc)2

)

4S2

(
1

a2b2
+

1

b2c2
+

1

c2a2

)
= 4S2

(
(a+ b+ c)2 − 2(ab+ bc+ ca)

(abc)2

)

4S2

(
1

a2b2c2

)
= 4S2

(
1

(abc)2

)
.

Therefore, (x2−h2
a)(x

2−h2
b)(x

2−h2
c) is a polynomial of sixth degree with rational

coefficients having the altitudes of the triangle as roots.
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Exercise 5 (Putnam 2008)
Let p be a prime number. Let h(x) be a polynomial with integer coefficients
such that h(0), h(1), . . . , h(p2 − 1) are distinct modulo p2. Show that h(0),
h(1), . . . , h(p3 − 1) are distinct modulo p3.

Solution

Claim. h(x+ p)− h(x) ≡ ph′(x) (mod p2).

Let h(x) = anx
n + an−1x

n−1 + · · · + a1x + a0 where ai are integers for i = 1, 2,
. . . , n. We have

h(x+ p)− h(x) = an
(
(x+ p)n − xn

)
+ an−1

(
(x+ p)n−1 − xn−1

)
+ · · ·+ a1p

≡ p · nanxn−1 + p · (n− 1)an−1x
n−2 + · · ·+ p · 2a2x+ p · a1 (mod p2)

= ph′(x) (mod p2).

Claim. For all i ∈ {0, 1, . . . , p3−1}, there is some s such that h(s) ≡ i (mod p3).

Note that it is sufficient to prove the claim since there are p3 choices to map to.

Take any i from the set {0, 1, . . . , p3−1}. Then there is some r ∈ {0, 1, . . . , p2−1}
such that h(r) ≡ i (mod p2). Let f(x) = h(x)− i. Then f(r) ≡ 0 (mod p2). Since

f(r + p)− f(r) = h(r + p)− h(r) ≡ ph′(r) ̸≡ 0 (mod p2),

we have
f ′(r) ≡ h′(r) ̸≡ 0 (mod p).

Hensel’s lemma with m = 1 gives that f(s) ≡ 0 (mod p3), and r ≡ s (mod p2).
Since there is s ∈ {1, 2, . . . , p3 − 1} such that h(s) ≡ i (mod p3), this completes
the proof.
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6
September 24, 2024

Exercise 1
You have 49 rectangular tiles of length 6 and width 1. You would like to cover
a 21×14 room. Show that you will need to cut a tile to do this.

Solution Assign the number i + j (mod 6) for each grid in the ith row and jth
column. Suppose it is possible to cover the 21 × 14 room with 6 × 1 tiles. For
any tile, the six grid for each tile should have all different numbers, from 0 to 5.
Therefore, there should be equal numbers of 0 to 5 written in the room, 49 of each.

However, this cannot happen. In the first column, the values of i+ j are 2, 3, . . . ,
22, so there are four 2, 3, 4, and three 5, 0, 1, written. In the second column, four
of 3, 4, 5 and three of 0, 1, 2 are written. Repeating this for every column, it is
calculated that in the 21× 14 room, 48 of 0s and 1s, 49 of 2s and 5s, and 50 of 3
and 4s are written.

Therefore, it is impossible to fill the room using only 6× 1 tiles.
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Exercise 2 (Putnam 2023)
Consider an m-by-n grid of unit squares, indexed by (i, j) with 1 ≤ i ≤ m and
1 ≤ j ≤ n. There are (m − 1)(n − 1) coins, which are initially placed in the
squares (i, j) with 1 ≤ i ≤ m − 1 and 1 ≤ j ≤ n − 1. If a coin occupies the
square (i, j) with i ≤ m− 1 and j ≤ n− 1 and the squares (i+1, j), (i, j +1),
and (i + 1, j + 1) are unoccupied, then a legal move is to slide the coin from
(i, j) to (i+1, j+1). How many distinct configurations of coins can be reached
starting from the initial configuration by a (possibly empty) sequence of legal
moves?

Solution We claim that the number of possible configurations is
(
n+m−2
n−1

)
.

Claim. There is a bijective map between all possible configurations and paths
from (1, 1) to (m,n) of m− 1 horizontal steps and n− 1 vertical steps.

(Injective) Note that the initial configuration (before any move) corresponds to a
path. After a legal move, there is still a path, connecting (i, j+1), (i, j), (i+1, j),
which is changed from the path connecting (i, j + 1), (i+ 1, j + 1), (i+ 1, j).

(Surjective) Suppose that there is a path from (1, 1) to (m,n) such there is no
configuration possible to make a path. If this path is not the initial path (the path
before any move), then there is some i and j such that the path passes (i, j + 1),
(i, j), and (i+ 1, j), respectively. Then we undo this move, so change the path to
pass (i, j + 1), (i + 1, j + 1), and (i + 1, j) respectively. Repeating this will even-
tually give the initial path, which is a contradiction since there is a configuration
corresponding to the initial path. Therefore the mapping is surjective.

Thus there is a bijective map between all possible configurations and paths from
(1, 1) to (m,n) of m− 1 horizontal steps and n− 1 vertical steps. The number of
possible paths are

(
n+m−2
n−1

)
.
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Exercise 3
The numbers 1, 2, 3, . . . , 2024 are written on a blackboard. Each turn you
may take 4 numbers of the form a, b, c, a+ b+ c and replace them with a+ b,
b+ c, c+ a. Show that you cannot do this more than 600 times.

Solution

Claim. The sum of the numbers is an invariant.

At each move, the sum of the numbers is changed by(
a+ b+ c+ (a+ b+ c)

)
−
(
(a+ b) + (b+ c) + (c+ a)

)
,

which is zero. Thus the sum of the numbers is an invariant and this value is
1 + 2 + · · ·+ 2024 = (2024 · 2025)/2.

Claim. The sum of the square of the numbers is an invariant.

At each move, the sum of the numbers is changed by(
a2 + b2 + c2 + (a+ b+ c)2

)
−
(
(a+ b)2 + (b+ c)2 + (c+ a)2

)
,

which is zero. Thus the sum of the square of the numbers is an invariant and this
value is 12 + 22 + · · ·+ 20242 = (2024 · 2025 · 4049)/6.

Let the numbers be a1, a2, . . . , an after each move. Then n, the number of num-
bers, is strictly decreasing since four numbers are replaced to three. By Cauchy-
Schwarz,

n∑
i=1

a2i

n∑
i=1

12 ≥

(
n∑

i=1

ai

)2

2024 · 2025 · 4049
6

· n ≥
(
2024 · 2025

2

)2

n ≥ 6 · 2024 · 2025
4 · 4049

> 1518.

Therefore, the number of numbers should be greater than 1518, and therefore the
move cannot be done more than 600 times.
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Exercise 4
A rectangular floor is covered by 2× 2 and 1× 4 tiles. One tile got smashed.
There is a tile of the other kind available. Show that the floor cannot be
covered by rearranging the tiles.

Solution Let the rectangular floor be m×n, where the tile at mth row, nth column
is assigned the number m+ n (mod 4). Then, the four grids in the 1× 4 tile have
all different numbers, while the four grids in the 2 × 2 tile is consisted of three
numbers where two of them are repeated.

If the 2 × 2 tile got smashed, the remaining numbers to fill are three numbers,
which two of them are repeated. It is impossible to fill this with a 1 × 4 tile.
Also, if the 1× 4 tile got smashed, the remaining numbers to fill are four different
numbers. It is impossible to fill this with a 2× 2 tile. This completes the proof.
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Exercise 5
Several positive integers are written on a blackboard. One can erase any two
distinct integers and write their greatest common divisor and least common
multiple instead. Prove that eventually the numbers will stop changing.

Solution Let the positive integers written be a1, a2, . . . , an. Note that for all
positive integers a and b, ab = gcd(a, b) · lcm(a, b).

Take any positive integers a and b with a ̸= b, and let g = gcd(a, b). We have

(gcd(a, b) + lcm(a, b))− (a+ b) = g(a′b′ − a′ − b′ + 1)

= g(a′ − 1)(b′ − 1)

> 0

so each move strictly increases
n∑

i=1

ai with the amount g(a′ − 1)(b′ − 1).

Suppose by contradiction, it is possible to change the numbers infinite times. Since
the sum is strictly increasing at every move, the sum should eventually diverge to
infinity. However, this is impossible since the product of all numbers integers is
fixed. If we have an infinite sum of finite amount of numbers, at least one of them
should be infinite, which will led to the product being infinite.

Thus it is impossible to change the numbers infinite times, and this completes the
proof.
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7
October 1, 2024

Exercise 1
Show that every continuous function f : [a, b] → [a, b] has a fixed point, i.e.
there is c ∈ [a, b] such that f(c) = c.

Solution The codomain of the function f is [a, b]. Let f([a, b]) = [p, q]. Then
a ≥ p ≥ q ≥ b. Define the function g(x) = f(x)−x. Then g has range [p−a, q−b].
Since p − a > 0 and q − b < 0, ∃c ∈ [a, b] such that g(c) = f(c) − c = 0. Thus
∃c ∈ [a, b] such that f(c) = c.
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Exercise 2 (Putnam 2015)
Let A and B be points on the same branch of the hyperbola xy = 1. Suppose
that P is a point lying between A and B on this hyperbola, such that the area
of the triangle APB is as large as possible. Show that the region bounded by
the hyperbola and the chord AP has the same area as the region bounded by
the hyperbola and the chord PB.

Solution Let A
(
a, 1

a

)
and B =

(
b, 1

b

)
. WLOG let a, b > 0, a < b, and let P

(
x, 1

x

)
where a < x < b. Shoelace formula on △APB gives

SAPB =
1

2

∣∣∣∣∣∣∣∣
a 1/a

b 1/b

x 1/x

a 1/a

∣∣∣∣∣∣∣∣
=

1

2

∣∣∣∣ab − b

a
+

b

x
− x

b
+

x

a
− a

x

∣∣∣∣
=

1

2

∣∣∣∣(b− a)

(
1

x
+

x

ab
− 1

a
− 1

b

)∣∣∣∣
=

1

2

∣∣∣∣ 1x (b− a)
(x
a
− 1
)(x

b
− 1
)∣∣∣∣ .

Since a < x < b, the value inside the absolute value is negative, so

SAPB = −1

2
(b− a)

(
1

x
+

x

ab
− 1

a
− 1

b

)
.

To maximize this value, we need to minimize
1

x
+

x

ab
, which happens at x =

√
ab

by the AM-GM inequality. Thus P

(√
ab,

1√
ab

)
.

We have the following equations for line AP and PB:

AP : y = − 1√
a3b

x+
1√
ab

+
1

a

PB : y = − 1√
ab3

x+
1√
ab

+
1

b
.

The area of the region bounded by the hyperbola and the chord AP is∫ √
ab

a

(
− 1√

a3b
x+

1√
ab

+
1

a
− 1

x

)
dx = −1

2

1√
a3b

x2 +

(
1√
ab

+
1

a

)
x− lnx

∣∣∣∣
√
ab

a

= −1

2

√
b

a
+

1

2

√
a

b
+

b− a√
ab

− 1

2
ln

b

a
.
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The area of the region bounded by the hyperbola and the chord AP is∫ b

√
ab

(
− 1√

ab3
x+

1√
ab

+
1

b
− 1

x

)
dx = −1

2

1√
ab3

x2 +

(
1√
ab

+
1

b

)
x− lnx

∣∣∣∣b√
ab

= −1

2

√
b

a
+

1

2

√
a

b
+

b− a√
ab

− 1

2
ln

b

a
.

Therefore, the region bounded by the hyperbola and the chord AP has the same
area as the region bounded by the hyperbola and the chord PB.
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Exercise 3
Let f : R → R be a continuous function. For x ∈ R, define

g(x) = f(x)

∫ x

0

f(t) dt.

Show that if g is a (not necessarily strictly) decreasing function (i.e. for a < b,
g(a) ≥ g(b)) then f is identically equal to 0.

Solution Let F (x) =

∫ x

0

f(t) dt. Then F ′(x) = f(x). So g(x) = F ′(x)F (x).

Taking the antiderivative gives∫
g(x) =

∫
F ′(x)F (x) =

1

2

(
F (x)

)2
+ C.

Let G(x) =
1

2
(F (x))2 + C. Then G(0) = C, and G(x) ≥ C for all x. Since

G′(0) = g(0) = 0, g(x) ≤ 0 if x ≥ 0. If we choose a > 0, then

G(a)−G(0)

a− 0
= g(b)

for some b ∈ (0, a) by the Mean Value Theorem. However, the left-hand side is
equal or greater than zero, and the right side is equal or less than zero. Thus

G(a)−G(0)

a− 0
= g(b) = 0.

Since a > 0 was arbitrary, G(x) = G(0) = C for all x ≥ 0.

Now, choose a′ < 0. Then

G(a′)−G(0)

a′ − 0
= g(b′)

for some b ∈ (a′, 0) by the Mean Value Theorem. Since g is monotonically decreas-
ing, g(b′) ≥ 0. The left-hand side above is equal or less than zero, and the right
side is equal or greater than zero. Thus

G(a′)−G(0)

a′ − 0
= g(b′) = 0.

Since a′ < 0 was arbitrary, G(x) = G(0) = c for all x ≤ 0.

Thus G(x) = C for all x, and F (x) = 0 for all x. Therefore F ′(x) = f(x) = 0 for
all x, and f is identically zero.
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Exercise 4
Compute ∫

(x6 + x3)
3
√

x3 + 2 dx.

Solution Note that∫
(x6 + x3)

3
√
x3 + 2 dx =

∫
(x5 + x2)

3
√
x6 + 2x3 dx.

Let x6 + 2x3 = u. Then du = 6(x5 + x2)dx. Thus∫
(x6 + x3)

3
√

x3 + 2 dx =

∫
(x5 + x2)

3
√
x6 + 2x3 dx

=
1

6

∫
3
√
u du

=
1

6
· 3
4
u4/3 + C

=
1

8
(x6 + 2x3)4/3 + C

=
1

8
x4(x3 + 2)4/3 + C.
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Exercise 5 (Putnam 1987)
Curves A, B, C, and D are defined in the plane R2 as follows:

A =

{
(x, y) : x2 − y2 =

x

x2 + y2

}
,

B =

{
(x, y) : 2xy +

y

x2 + y2
= 3

}
,

C = {(x, y) : x3 − 3xy2 + 3y = 1},

D = {(x, y) : 3x2y − 3x− y3 = 0}.

Prove that A ∩B = C ∩D.

Solution Let z = x+ iy. Then the curves can be written as

A = {z : ℜ(z2) = ℜ(1/z)}

B = {z : ℑ(z2)−ℑ(1/z) = 3}

C = {z : ℜ(z3) + 3ℑ(z) = 1}

D = {z : ℑ(z3)− 3ℜ(z) = 0}.

(⊆) Suppose z ∈ A ∩B. Then

ℜ(z2) = ℜ(1/z)

ℑ(z2) = ℑ(1/z) + 3.

Adding the bottom equation multiplied by i to the top equation gives z2 = 1/z+3i,
so z3 − 3iz = 1. Then

ℜ(z3 − 3iz) = ℜ(1 + 0i) = 1

ℑ(z3 − 3iz) = ℑ(1 + 0i) = 0.

Since ℜ(z3 − 3iz) = x3 − 3xy2 + 3y and ℑ(z3 − 3iz) = 3x2y − 3x− y3, z ∈ C and
z ∈ D, so z ∈ C ∩D.

(⊇) Suppose z ∈ C ∩D. Then

ℜ(z3 − 3iz) = 1

ℑ(z3 − 3iz) = 0,
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so z3 − 3iz = 1. Since z ̸= 0 (because if z = 0, z /∈ C), z2 − 1/z = 3i. Thus

ℜ(z2)−ℜ(1/z) = 0

ℜ(z2) = ℜ(1/z)

ℑ(z2)−ℑ(1/z) = 3.

So z ∈ A and z ∈ B, and hence z ∈ A ∩B.
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8
October 15, 2024

Exercise 1 (British Math Olympiad 1980)
Find all a0 such that the sequence defined by an+1 = 2n − 3an for n ≥ 0 is
increasing.

Solution We start with a formula of an in terms of a0.

Claim. an =
2n − (−3)n

5
+ (−3)na0.

We use induction to prove the claim. For n = 1, a1 =
2 + 3

5
− 3a0 = 1− 3a0.

Suppose ak =
2k − (−3)k

5
+ (−3)ka0 for some k ∈ Z+. Then

ak+1 = 2k − 3ak

= 2k − 3

(
2k − (−3)k

5
+ (−3)ka0

)

=
2k+1 + 3 · (−3)k

5
− 3 · (−3)ka0

=
2k+1 − (−3)k+1

5
+ (−3)k+1a0.

To make the sequence {an} increasing, since (−3)n dominates 2n and oscillates
between positive and negative, the constant multiplied to (−3)n should be zero.
Thus a0 = 1/5.

45



The Putnam Challenge Joshua Im (August 20, 2024 - November 26, 2024)

Exercise 2 (Iberoamerican Math Olympiad 2009)
The sequence {an}∞n=1 satisfies a1 = 1 and for n ≥ 1,

a2n = an + 1, and a2n+1 =
1

a2n
.

Prove that every positive rational number occurs in the sequence.

Solution Note that it is sufficient to prove that every positive rational number
r > 1 appears in the sequence since the term right after will always be smaller
than 1.

Claim. n is even if and only if an > 1.

First notice that all terms in the sequence are positive. By contradiction, suppose
there exists some even n such that an < 1. Then an/2 = an − 1 < 0, which is
impossible. So an > 1 for even n. Now, suppose that there exists some odd n such
that an > 1. Then an−1 < 1 with n− 1 even, which is impossible. This proves the
claim.

Claim. For p, q ∈ Z+ with gcd(p, q) = 1 and p > q,
p

q
appears in the sequence.

We prove with induction on p + q. If p + q = 3, the only possible case is (p, q) =

(2, 1), which is a2.

Now, suppose every p/q > 1 appears in the sequence for p + q ≤ k for some
k ∈ Z+.

We claim that every p/q when gcd(p, q) = 1 and p + q = k + 1 appears in the
sequence. Suppose not so that there exists some p0/q0 > 1 that doesn’t appear
in the sequence. Then p0/q0 − 1 also should not appear in the sequence since if
an = p0/q0 − 1 for some n, a2n = p0/q0. This contradicts that every rational of
the form p/q with gcd(p, q) = 1 and p+ q ≤ k appears in the sequence since

p0
q0

− 1 =
p0 − q0

q0

and p0 − q0 + q0 = p0 ≤ k.

This completes the proof by induction.
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Exercise 3 (Putnam 2017)
Suppose that f(x) =

∑∞
i=0 cix

i is a power series for which each coefficient ci
is 0 or 1. Show that if f(2/3) = 3/2, then f(1/2) must be irrational.

Solution Suppose by contradiction that f(1/2) is rational. Then

f

(
1

2

)
=

∞∑
i=0

ci
2i

∈ Q

so ci eventually repeats. Suppose this repetition starts from an and has period m

so that

cn+km = cn

cn+1+kn = cn+1

... =
...

cn+m−1+km = cn+m−1

for all k ∈ Z+. Then

f

(
2

3

)

= c0 + c1 ·
2

3
+ c2

(
2

3

)2

+ · · ·+ cn−1

(
2

3

)n−1

+ cn

(
2

3

)n

+ · · ·+ cn+m−1

(
2

3

)n+m−1

+ cn

(
2

3

)n+m

+ · · ·+ cn+m−1

(
2

3

)n+2m−1

+ · · ·

= c0 + c1 ·
2

3
+ c2

(
2

3

)2

+ · · ·+ cn−1

(
2

3

)n−1

+
cn
(
2
3

)n
+ · · ·+ cn+m−1

(
2
3

)n+m−1

1−
(
2
3

)m ,

which has a odd common denominator. Thus f(2/3) can never be 3/2, which is a
contradiction. Therefore, f(1/2) is irrational.
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Exercise 4 (Putnam 2010)
Is there an infinite sequence of real numbers a1, a2, a3, . . . such that

am1 + am2 + am3 + · · · = m

for every positive integers m?

Solution We first start with a claim.

Claim. Some of the terms has absolute value greater than 1.

Suppose not, so that every term has absolute value equal or smaller than 1. Define

the sequence {bn} by bn =

∞∑
i=1

ani . Then lim
n→∞

bn = 0 since |ai|n → 0 as n → ∞.

This contradicts that am1 + am2 + · · · = m since the LHS eventually goes to 0

and RHS eventually goes to infinity. Thus it is impossible to have every term’s
absolute value equal or smaller than 1.

The claim above gives that there is some ak in the sequence such that |ak| > 1.
Then, for sufficiently large n,

a2n1 + a2n2 + · · · ≥ a2nk > 2n

since exponential functions of base greater than 1 eventually gets greater than
linear functions.

Therefore, it is impossible to have am1 + am2 + am3 + · · · = m for all m ∈ Z+.
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9
October 22, 2024

Useful Results
Definition : Cauchy Sequence

In a metric space, a sequence {an} is called a Cauchy sequence if for all
ϵ > 0, there is N ∈ Z+ such that

∀m, n > N , |am − an| < ϵ.

Theorem : Cauchy Criterion

In a complete metric space, a sequence is convergent if and only if it is a
Cauchy sequence.
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Exercise 1 (Putnam 1988)
Prove that if

∑∞
n=1 an is a convergent series of positive real numbers, then so

is
∑∞

n=1(an)
n/(n+1).

Solution

Claim. (an)
n/(n+1) < can for some constant c if and only if an >

1

cn+1
.

We have

(an)
n/(n+1) < can

(an)
n < cn+1(an)

n+1

1

cn+1
< an.

If an >
1

2n+1
, then (an)

n/(n+1) < 2an. If an ≤ 1

2n+1
, we have (an)

n/(n+1) ≤ 1

2n
.

In either case, we have

(an)
n/(n+1) < 2an +

1

2n
.

Thus,
∞∑

n=1

(an)
n/(n+1) < 2

∞∑
n=1

an +

∞∑
n=1

1

2n
= 2

∞∑
n=1

an + 1.

Since the left side converge, the right side should also converge, which completes
the proof.
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Exercise 2 (Putnam 1990)
Is

√
2 the limit of sequence of numbers of the form 3

√
m− 3

√
n for non-negative

integers m, n?

Claim. (n+ 1)1/3 − n1/3 → 0 as n → ∞.

It is suffient to prove that ∀ϵ > 0, there is N such that if n > N , then (n+1)1/3−
n1/3 < ϵ.

Fix ϵ > 0, and let N =
1

27ϵ6
. Then

ϵ3 + 3ϵ2n1/3 + 3ϵn2/3 > 3ϵ2n1/3

> 3ϵ2 ·
(
1/27ϵ6

)1/3
> 1

and

(ϵ+ n1/3)3 = ϵ3 + 3ϵ2n1/3 + 3ϵn2/3 + n

> n+ 1,

so (n+ 1)1/3 < ϵ+ n1/3 and (n+ 1)1/3 − n1/3 < ϵ.

Claim. Let a and k be integers. If a is fixed, then the sequence {ak} defined by
ak = (a+ k)1/3 − a1/3 is unbounded.

Since a is fixed, a1/3 is fixed. Letting k → ∞ gives (a + k)1/3 → ∞, to ak → ∞
and {ak} is unbounded.

Claim. For all ϵ > 0, we can find a pair (m,n) such that | 3
√
m− 3

√
n−

√
2| < ϵ.

Fix ϵ > 0. Then there is N such that if n > N , then (n + 1)1/3 − n1/3 < ϵ. Fix
n > N . Then there is some integer k such that

(n+ k)1/3 − n1/3 <
√
2 < (n+ k + 1)1/3 − n1/3

since the sequence {nk} defined by nk = (n+ k)1/3 − n1/3 is unbounded. Since(
(n+ k)1/3 − n1/3

)
−
(
(n+ k + 1)1/3 − n1/3

)
= (n+ k + 1)1/3 − (n+ k)1/3 < ϵ,

we should have |(n + k)1/3 − n1/3 −
√
2| < ϵ or |(n + k + 1)1/3 − n1/3 −

√
2| < ϵ.

This completes the proof with (m,n) = (n+ k + 1, n) or (n+ k, n).
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Exercise 3 (Putnam 2016)
Let x0, x1, x2, . . . be the sequence such that x0 = 1 and for n ≥ 0,

xn+1 = ln(exn − xn).

Show that the infinite series x0 + x1 + x2 + · · · converges and find its sum.

Solution Let yn = exn for n ≥ 0. Then exn+1 = exn − xn gives yn+1 − yn =

− ln yn = −xn. We have

∞∑
n=0

xn =

∞∑
n=0

(yn − yn+1) = lim
n→∞

(y1 − yn).

Claim. The sequence {xn} converges.

We first prove that all terms in {xn} is positive. xn is clearly positive when n = 0.
Suppose xk is positive. Then

exk+1 − xk+1 =

(
1 + xk+1 +

1

2!
x2
k+1 + · · ·

)
− xk+1

= 1 +
1

2!
x2
k+1 +

1

3!
x3
k+1 + · · ·

> 1.

So exk+1 −xk+1 > 1, and xk+1 ln(e
xk+1 −xk+1) > 0. This proves that xn is positive

for all n ≥ 0 by induction. Now, since exn − xn < exn , we have

xn+1 = ln(exn − xn) < ln(exn) = xn,

so {xn} is strictly decreasing. Since the sequence {xn} is bounded below by 0,
{xn} converges by the monotone convergence theorem. Thus {yn} also converges.
Therefore,

∞∑
n=0

xn = y0 − lim
n→∞

yn = e− lim
n→∞

exn

Which gives that
∞∑

n=0

xn converges. Since
∞∑

n=0

xn converges, lim
n→∞

xn = 0, so

∞∑
n=0

xn = e− lim
n→∞

e0 = e− 1.
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October 29, 2024

Tips
• Consider the convex hull.

• In a set of points, consider the extremes (the farthest points, the largest
triangle, the smallest triangle, etc)

53



The Putnam Challenge Joshua Im (August 20, 2024 - November 26, 2024)

Exercise 1
Show that there are no equilateral triangles in R2 whose vertices all have integer
coordinates.

Solution Suppose there is an equilateral triangle in R2 with all vertices in integer
coordinates. WLOG fix one point O(0, 0). Let A(a, b) and B(c, d), and X be any
point on the x-axis. If we let ∠AOX = θ, then ∠BOX = θ + 60◦. We have

tan θ =
a

b

tan(θ + 60◦) =
c

d
.

By the tangent addition formula,

tan(θ + 60◦) =
tan θ +

√
3

1−
√
3 tan θ

=
a
b +

√
3

1−
√
3a
b

=
a+

√
3b

b−
√
3a

=
(a+

√
3b)(b+

√
3a)

b2 − 3a2

=
4ab+

√
3(a2 + b2)

b2 − 3a2

=
c

d
.

So
4ab+

√
3(a2 + b2)

b2 − 3a2
should be rational, but this is impossible unless a = b = 0,

which is a contradiction. Therefore, there are no equilateral triangles in R2 whose
vertices all have integer coordinates.
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Exercise 2 (Putnam 2008)
What is the maximum number of rational points that can lie on a circle in R2

whose center is not a rational point? (A rational point is a point both of whose
coordinates are rational numbers.)

Solution Note that it is possible to find two rational points that lie on a circle
whose center is not a rational point. If we let the center (1,

√
2), then there are

two rational points (0, 0) and (2, 0) that lies on a circle of radius
√
3 and center

(1,
√
2).

Claim. The maximum number of rational points is two.

Suppose there are three rational points A, B, and C that lie on a circle whose
center is not a rational point.

If the three points all have different x and y-coordinates, the equations of line AB

and AC will both be of the form y = mx+n, where m and n are rational numbers.
Let P and Q be the midpoints of AB and AC, respectively. Then P and Q are
rational points. Then perpendicular bisector of AB and AC both be of the form
y = px + q, where p and q are rational points. Since these two lines meet at the
center, solving the system of linear equations should give that the center is also
the rational point, which is a contradiction.

If two of the points have the same y-coordinates, WLOG say A and B. Then the
perpendicular bisector of AB will be of the form x = k, where k is rational. Since
the perpendicular bisector of AC will still be a line with rational coefficients, this
also gives that the center is a rational point.

Therefore, it is impossible to have three rational points on a circle with center not
a rational point, so the maximum number of points is two.
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Exercise 3 (Putnam 2010)
Given that A, B, and C are noncollinear points in the plane with integer
coordinates such that the distances AB, AC, and BC are integers, what is the
smallest possible value of AB?

Solution Note that AB = 3 is achievable by setting A(0, 0), B(3, 0), and C(3, 4).
We claim that this is the smallest value.

Let AB = 1. Then by the triangular inequality, AB + BC > AC, but since BC

and AC are integers, BC = AC. This is a contradiction since the C should lie on
x = 1/2.

Now, let AB = 2, and WLOG let A(0, 0) and B(2, 0), and let AC the longest side.
By the triangular inequality, AB +BC > AC, so AC = BC + 1 or AC = BC.

If AC = BC, C(1, y). However, AC2 = 1 + y2 cannot be a perfect square.

If AC = BC + 1, let C(x, y). Then SABC =
1

2
· 2 · y = y, which is an integer. Let

BC = a. Then s =
1

2
(2a+ 3), which is odd. By Heron,

S2
ABC = s(s− 2)(s− a)(s− a− 1) =

1

16
(2a+ 3)(2a− 1) · 3 · 1

which is not an integer, a contradiction.

Therefore, AB = 1 and AB = 2 is not possible, and the smallest possible value of
AB is 3.
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Exercise 4
Find all sets S of finitely many points in the plane, no three of which are
collinear and such that for any three points A, B, C in S, there is another
point D in S such that A, B, C, D (in some order) are the vertices of a
parallelogram.

Solution We claim that all sets of S are the sets of four points which forms a
parallelogram.

Consider the parallelogram ABCD formed by the points of S that has the largest
area.

Claim. It is impossible to have a fifth point X ∈ S outside of ABCD.

Suppose such X exists. Let h1 be the distance from D to AB, p the distance
between X and AB, and q the distance between X and CD. Then max{p, q} > h1.
WLOG let p > h1. Since X, A, B ∈ S, there is some Y ∈ S such that either
XAY B, XY AB, or XABY is a parallelogram. For any of these three, its area is
the twice of SXAB , which is

2 · 1
2
·AB · p > AB · h1 > SABCD.

This contradicts that ABCD is the parallelogram with the largest area, so X

cannot be outside of ABCD.

Claim. It is impossible to have a fifth point X ∈ S inside of ABCD.

Suppose such X exists. Since X, A, B ∈ S, there is some Y ∈ S such that either
XAY B, XY AB, or XABY is a parallelogram.

If XAY B is a parallelogram, Y is the reflection of X across the midpoint of AB

and X is inside ABCD, Y should be outside of ABCD. If either XY AB or
XABY is a parallelogram, then XY ∥ AB. But since XY = AB, so one of X and
Y should be outside of ABCD or both should lie on the sides of ABCD. However,
if X and Y lie on the sides of the parallelogram, we have three collinear points, so
it is impossible to make X and Y both lie on the sides of the parallelogram.

For any of the three cases, Y is outside of ABCD, which cannot happen by the
first claim. Therefore, there couldn’t be a fifth point besides A, B, C, and D, and
this completes the proof.
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Useful Results
Theorem

Trace is a linear map. That is, if A and B are n × n matrices and α and β

are constants, then

tr(αA+ βB) = α tr(A) + β tr(B).

Theorem

tr(AB) = tr(BA).

Theorem

eterminant is multiplicative. That is, for any n × n matrices over the same
commutative field, det(AB) = det(A) · det(B).

Definition : Characteristic Polynomial

Suppose A is a n×n matrix over a field K. The characteristic polynomial
of A is defined as PA(t) = det(tI − A), which is a nth degree polynomial in
t.

Definition : Eigenvalue and Eigenvector

An eigenvector v ∈ Kn is a non-zero vector that satisfies the relation
Av = λv, for some scalar λ ∈ K. The value λ is called the eigenvalue.

The eigenvalues of a square matrix are the roots of the characteristic polynomial
of the matrix.

Theorem : Cayley-Hamilton

Let P be the characteristic polynomial of A. Then P (A) = 0.
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Theorem : Jordan Normal Form Theorem

For any n × n matrix A over C, there is an invertible matrix U such that
UAU−1 can be written in Jordan normal form, which is of the form

r 1 0 · · · 0

0 r 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · r


where r is an eigenvalue. If the characteristic polynomial has distinct roots,
then the blocks can be taken to be 1× 1, i.e. the matrix is diagonalizable.

• Over C, diagonalizable matrices are dense in the space of matrices seen as
Cn×n.

• If A is an n× n matrix over a field K, with eigenvalues λ1, λ2, . . . , λn, and
P is any polynomial in K[x], then P (A) has eigenvalues P (λi).

59



The Putnam Challenge Joshua Im (August 20, 2024 - November 26, 2024)

Exercise 1 (Putnam 2014)
Let A be the n× n matrix whose entry in the i-th row and j-th column is

1

min(i, j)

for 1 ≤ i, j ≤ n. Compute det(A).

Solution We have

A =


1 1 1 · · · 1

1 1
2

1
2 · · · 1

2

1 1
2

1
3 · · · 1

3
...

...
...

. . .
...

1 1
2

1
3 · · · 1

n .

 .

Then

det(A) = det



1 1 1 · · · 1 1

1 1
2

1
2 · · · 1

2
1
2

1 1
2

1
3 · · · 1

3
1
3

...
...

...
. . .

...
...

1 1
2

1
3 · · · 1

n−1
1

n−1

1 1
2

1
3 · · · 1

n−1
1
n



= det



1 1 1 · · · 1 1

1 1
2

1
2 · · · 1

2
1
2

1 1
2

1
3 · · · 1

3
1
3

...
...

...
. . .

...
...

1 1
2

1
3 · · · 1

n−1
1

n−1

0 0 0 · · · 0 1
n(n−1)



= det



1 1 1 · · · 1 1

1 1
2

1
2 · · · 1

2
1
2

1 1
2

1
3 · · · 1

3
1
3

...
...

...
. . .

...
...

0 0 0 · · · − 1
(n−1)(n−2)

1
n−1

0 0 0 · · · 0 − 1
n(n−1)


= · · ·
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= det



1 1 1 · · · 1 1

0 − 1
6 ∗ · · · ∗ ∗

0 0 − 1
12 · · · ∗ ∗

...
...

...
. . .

...
...

0 0 0 · · · − 1
(n−1)(n−2)

1
n−1

0 0 0 · · · 0 − 1
n(n−1)


.

Since the last matrix is an upper triangular matrix, the determinant is the product
of all diagonal entries. Therefore

det(A) = det



1 1 1 · · · 1 1

0 − 1
6 ∗ · · · ∗ ∗

0 0 − 1
12 · · · ∗ ∗

...
...

...
. . .

...
...

0 0 0 · · · − 1
(n−1)(n−2)

1
n−1

0 0 0 · · · 0 − 1
n(n−1)


=

(−1)n−1

(n− 1)!n!
.
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Exercise 2
Suppose A and B are n×n real matrices such that tr(AAT +BBT ) = tr(AB+

ATBT ). Show that A = BT .

Solution We have

tr(AAT +BBT )− tr(AB +ATBT ) = tr(AAT +BBT −AB −ATBT )

= tr
(
(A−BT )(AT −B)

)
= tr

(
(A−BT )(A−BT )T

)
= 0.

Claim. For a n× n matrix M , if tr(MMT ) = 0, M is the zero matrix.

Let

M =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 .

Then

MMT =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann



a11 a21 · · · an1
a12 a22 · · · an2
...

...
. . .

...
a1n a2n · · · ann


and tr(MMT ) =

n∑
i=1

n∑
j=1

a2ij . So if tr(MMT ) = 0, all entries of M should be zero,

and M should be the zero matrix.

Since tr
(
(A−BT )(A−BT )T

)
= 0, A−BT is the zero matrix, and thus A = BT .
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Exercise 3
Let A and B be 2 × 2 matrices with real entries satisfying (AB − BA)n = I2
for some positive integer n. Prove that n is even and (AB −BA)4 = I2.

Solution Note that n ̸= 1 since tr(AB −BA) = 0 but tr(I2) = 2.

Since tr(AB −BA) = 0, let AB −BA =

[
a b

c −a

]
. Then

(AB −BA)2 =

[
a2 + bc 0

0 a2 + bc

]
= (a2 + bc)I2.

Claim. n is even.

Suppose n is odd, and let n = 2k + 1. Then

(AB −BA)n = (AB −BA)2k · (AB −BA)

= (a2 + bc)kIk2 (AB −BA)

= (a2 + bc)k(AB −BA).

If (AB − BA)n = I2, then tr(AB − BA) = (a2 + bc)k tr
(
(AB − BA)n

)
= 0 but

tr(I2) = 2, which is a contradiction. Thus n cannot be odd.

Let n = 2k. Then (AB − BA)n = (a2 + bc)kI2 = I2, so (a2 + bc)k = 1. Since
a2 + bc ∈ Z, a2 + bc is either 1 or −1. Thus (a2 + bc)2 = 1, and

(AB −BA)4 = (a2 + bc)2I22 = I2.
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12
November 12, 2024

Exercise 1
Find all continuous functions f : R → R such that f(x+ y) = f(x)f(y).

Solution We have f(x + x) = f(x) · f(x), so f(2x) = f(x)2 ≥ 0. This gives that
f(x) ≥ 0 for all x ∈ R.

If there is some x such that f(x) = 0, then f is identically zero since ∀a ∈ R,
f(a) = f(x)f(a− x) = 0.

If f is not zero anywhere, then ln f should be linear, so f = ecx.

Therefore, f = cex is the only solution where c ≥ 0.
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Exercise 2 (Putnam 1971)
Let X be the set of all reals except 0 and 1. Find all real valued functions f(x)
on X which satisfy f(x) + f(1− 1/x) = 1 + x for all x in X.

Solution Take any x ∈ X. We have

f(x) + f

(
1− 1

x

)
= 1 + x

f

(
1− 1

x

)
+ f

(
1− 1

1− 1/x

)
= f

(
1− 1

x

)
+ f

(
− 1

x− 1

)
= 1 + 1− 1

x

f

(
− 1

x− 1

)
+ f

(
1− 1

−1/(x− 1)

)
= f

(
− 1

x− 1

)
+ f(x) = 1− 1

x− 1

Adding the first and third equations and subtracting the second gives

2f(x) = x+
1

x
− 1

x− 1
,

so
f(x) =

1

2

(
x+

1

x
− 1

x− 1

)
.
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Exercise 3 (Putnam 1988)
Prove that there is a unique function f : R>0 → R>0 satisfying f(f(x)) =

6x− f(x) for all x.

Solution Fix some x0 ∈ R>0 and let a0 = x0. Define the recursive sequence by
an+1 = f(a0) for n ≥ 0. Then an+2 + an+1 − 6 = 0, so

an = α · 2n + β · (−3)n.

Since ai ≥ 0 for all i ∈ N, β should be zero since as n goes to infinity, an will
oscillate between positive and negative values. So an = α · 2n and x0 = a0 = α.
Since an+1 = f(x0) = 2α = 2x, f(x) = 2x for all x ∈ R>9.
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Exercise 4
The function f : R → R satisfies x+ f(x) = f(f(x)) for every x ∈ R. Find all
solutions to the equation f(f(x)) = 0.

Solution Letting x = 0 gives f(0) = f(f(0)). Letting x = f(0) gives f(0) +

f(f(0)) = f(f(f(0))). Since f(0) = f(f(0)), we have

f(f(f(0))) = f(f(0)) = f(f(0)) + f(0),

so f(0) = 0. We claim this is the only solution.

Claim. f is injective.

Let f(x) = f(y). Then

f(f(x))− x = f(x) = f(y) = f(f(y))− y,

so f(f(x))− x = f(f(y))− y. But since f(f(x)) = f(f(y)), we have x = y.

Then there is only one solution to f(x) = 0, which is x = 0. So f(f(x)) = 0 gives
f(x) = 0, and f(x) = 0 gives x = 0.
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13
November 19, 2024

Facts to Know
Theorem : Fundamental Theorem of Arithmetic

Every positive integer n > 1 can be written as a product of primes uniquely,
up to orders.

Theorem : Chinese Remainder Theorem

Let m be relatively prime to n. Then each residue class mod mn is equal to
the intersection of a unique residue class mod m and a unique residue class
mod n, and the intersection of each residue class mod m with a residue class
mod n is a residue class mod mn.

Theorem : Fermat’s Little Theorem

If a is an integer, p a prime number and p ∤ a, then ap−1 ≡ 1 (mod p).

Theorem : Euler Totient Theorem

If a is an integer and m is an integer relatively prime to a, then aφ(m) ≡ 1

(mod m).

Theorem : Wilson’s Theorem

If p is an integer, then (p− 1)! + 1 is divisible by p if and only if p is a prime
number.

Theorem : Bezout’s Identity

gcd(a, b) = g if and only if there exists integers x and y such that g = ax+by.
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Definition : Legendre Symbol

Let p be prime and a be an integer. Then define the Legendre symbol
(

a
p

)
as (

a

p

)
=


1 if a is a quadratic residue mod p

0 if p | a
−1 otherwise

.

The Legendre symbol is multiplicative. That is,
(
a

p

)(
b

p

)
=

(
ab

p

)
.

Lemma

•
(
−1

p

)
= (−1)(p−1)/2

•
(
2

p

)
= (−1)(p

2−1)/8

Theorem : Quadratic Reciprocity

If p and q are distinct primes, then
(
p

q

)(
q

p

)
= (−1)(p−1)(q−1)/4.

Theorem

Let p be a prime and vp(n) be the exponent of p in the prime factorization
of n. Then

vp(n!) =

∞∑
i=1

⌊
n

pi

⌋
.
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Exercise 1
Find all integers n such that there is an integer a with 2n − 1 | a2 + 1.

Solution We claim that n = 1 is the only possible integer. If n = 1 and a = 1,
then 1 | 12 + 1.

Suppose n > 1. Then 2n − 1 ≡ −1 ≡ 3 (mod 4).

Claim. There is a p ≡ 3 (mod 4) such that p | 2n − 1.

Suppose not. Then, for all prime dividing 2n − 1, p should either be 2 or 1 mod 4.
But p ̸= 2 since 2n − 1 is odd. If all prime factors are odd, then

2n − 1 = pe11 pe22 · · · · ≡ 1 · 1 · · · · ≡ 1 (mod 4),

which is a contradiction.

Take a 3 mod 4 prime p such that p | 2n − 1. Then p | a2 + 1. This gives a2 ≡ −1

(mod p), so −1 is a quadratic residue modulo p. However,(
−1

p

)
= (−1)(p−1)/2 = −1,

which is a contradiction to the fact that −1 is a quadratic residue modulo p.
Therefore, n cannot be greater than 1.
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Exercise 2
Let a and b be positive integers. Prove that the greatest common divisor of
2a + 1 and 2b + 1 divides 2gcd(a,b) + 1.

Solution Let d = gcd(2a+1, 2b+1). Then 2a ≡ −1 (mod d) and 2b ≡ −1 (mod d).
We have

4a ≡ (−1)2 = 1 (mod d)

4b ≡ (−1)2 = 1 (mod d).

Let g = gcd(a, b). Then there exists integers x and y such that g = ax+ by. This
gives

4ax+by ≡ 1x · 1y = 1 (mod d).

so d | 4g − 1 = (2g + 1)(2g − 1).

Claim. gcd(d, 2g − 1) = 1.

Note that d is odd since it is a greatest common divisor of two odd numbers. Take
any prime p dividing d. Then p is also odd. Suppose p | 2g − 1. Since g | a,
2g − 1 | 2a − 1, and p | 2a − 1. However, p | 2a + 1, so p | (2a + 1)− (2a − 1) = 2,
which is a contradiction since p should be an odd prime. Therefore, there is no
prime p | d such that p | 2g − 1, and gcd(d, 2g − 1) = 1.

Since d | (2g + 1)(2g − 1) and gcd(d, 2g − 1) = 1, we should have d | 2g + 1.
Therefore, gcd(2a + 1, 2b + 1) | 2gcd(a,b) + 1 and this completes the proof.
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Exercise 3 (Putnam 2006)
Alice and Bob play a game in which they take turns removing stones from a
heap that initially has n stones. The number of stones removed at each turn
must be one less than a prime number. The winner is the player who takes the
last stone. Alice plays first. Prove that there are infinitely many n such that
Bob has a winning strategy.

Solution Suppose there are only finitely many n such that Bob has a winning
strategy. Let B be the set of numbers which Bob has a winning strategy. Then B

is bounded above by some integer k.

For some n > k, Alice should have a prime number p such that n − (p − 1) is in
B since Bob does not have a winning strategy for n. That is, for all n > k. There
is some b ∈ B and prime p such that n = b+ p− 1. However, this cannot happen
if we set n = (k + 1)! + k. Since b < k, we should have (k + 1)! + 2 < n− b+ 1 <

(k + 1)! + (k + 1), with n− b+ 1 = p, but every integer between (k + 1)! + 2 and
(k + 1)! + (k + 1) is composite, a contradiction.

Therefore, there are infinitely many n such that Bob has a winning strategy.
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Exercise 4
Let a0 = 1, a1 = 2, and an = 4an−1 − an−2 for n ≥ 2. Find an odd prime
factor of a2015.

Solution The characteristic equation is X2−4X+1 = 0, which gives X = 2±
√
3.

So the general formula of an is

an = α(2 +
√
3)n + β(2−

√
3)n.

Letting n = 0 and n = 1 gives a system of equation for α and β, and we have

an =
1

2

(
(2 +

√
3)n + (2−

√
3)n
)
.

Claim. a5 | a2015.

Note that 5 | 2015. Let (2 +
√
3)5 = a and (2 −

√
3)5 = b. Then a and b are

irrational conjugates. We have

2a2015 = a403 + b403

= (a+ b)(a402 + a401b+ · · ·+ ab401 + b402).

Here, a+ b should be an integer, and

a402 + a401b+ · · ·+ ab401 + b402 =

201∑
i=i

(a201+ib201−i + a201−ib201+i) + a201b201

is also an integer since a201+ib201−i+a201−ib201+i and a201b201 are integers. So we
have 2a5 | 2a2015, and a5 | a2015.

Since a5 =
1

2

(
(2 +

√
3)5 + (2−

√
3)5
)
= 362, we have that 181 | a5 | a2015.
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