Dirichlet's Theorem on Arithmetic Progressions
MATH 300 HNR Foundations of Mathematics, Texas AGM University

Joshua Im

November 26, 2024

Contents at a Glance

Our goal is to prove the following theorem.

Theorem 1.1

If ged(a,n) = 1, then there are infinitely many primes of the form on the
arithmetic progression a + kn.

1
The proof is done by proving that Z — diverges. It is sufficient to prove

p=a (mod d)
p prime

the following since if there are finitely many primes of the form a + nd, then

1
Z — should converge.

p=a (mod d)
p prime

To prove the following, we introduce a multiplicative function y : U,, — C. This
is called a Dirichlet character.

Definition 1.1: Dirichlet Character

A Dirichlet chatacter mod m is a function, x : U, — C that is not
identically zero and satisfies x(ab) = x(a)x(b).

This definition can be extended to all of Z by letting x(a) = 0 if ged(a,m) > 1
and x(a +m) = x(a)). With Dirichlet characters, Riemann-Zeta functions, and

1
Dirichlet L-functions, we will prove that Z — diverges.

p=a (mod d)
p prime
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The Riemann-Zeta Function

= Definition 2.1: Riemann-Zeta Function

The Riemann-Zeta function ( : R — R+ is defined as

()=

We now want to look at for which values of s the function is defined. That is, for
which values of s the series converge. This can be found by the integral test.

— Lemma : Integral Test

Suppose that f(x) is a continuous, positive, and decreasing function on the
interval [k, 00) for some k € Z and let f(n) = a,. Then

/ f(x) dx converges if and only if Z ay converges.
k

n=k

Proof. Note that by shifting, it is sufficient to prove the case when k = 1.

Let f(z) be the red curve. The integral / f(z) dz is equal to the area between

1
f(z) and the x-axis on the interval [1,00), which is clearly greater than

dliap=1ay+1l-az+1-as+-.

n=2

Furthermore, the area is less than

oo
Zl-an:1-a1+1-a2+1.a3+....

n=1
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(o)
If / f(z) dz diverges, then
1

nz_:lan>/1 f(z) dz

will also diverge, and if / f(z) dx converge, then
1

Zan:a1+z<a1+/wf(x)dx
n=2 1

n=1

will also converge since a; is finite. O

Theorem 2.1

— 1
Z — converges if and only if s > 1. Thus, the domain of ((s) is s > 1.
n:

n=1

o0 o0
1 1
Proof. Tt is sufficient to prove that E — diverges and g — converges if s > 1.
n n

n=1 n=1

We have
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S

which goes to infinity. For s > 1, if we let f(x) = 275,

o0
1
Thus E — converges for s > 1 by the integral test. O
n

n=1

Lemma : Basel Problem

Proof. We compute ((2) by approximating sin « as polynomials. The Taylor series
of sinx is

; _ - (_1)k 2k+1 __ 56‘3 x° x’

We have another way to find a polynomial expression of sinx. Since the roots of
sinx are ---, —2mw, —m, 0, w, 27, -+, We can express sinz as

sinz = ax(z —7m)(z 4+ 7)(x — 2m)(z +27) - - -.

ny_ =1, we can find a, and

T

o D25
(D0 E)6E)

Therefore, we get

G B x7 72 2 72
Comparing the coefficients of z3, we get
11 11 1+ L 1,
3! 72 4n2 9p2 32
So
1 11 2
2oE=ltmtmt =g :
n=1
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Lemma
0o 1 1 —1
C)=>—=11 (1-—) -
n : D
n=1 p prime
Proof. Recall the sum of geometric series formula
9 1
1+r+r4.--=
1—r

if |r| < 1. Since

1
p"” < 1, we have

(-3 o)

p prime p prime

o [ € R o | E E
- 9s 228 3s 323 59 528

where the second last line follows from the unique prime factorization of positive
integers greater than 1. O

Theorem 2.2

1
Z — diverges.

p prime

Before the proof, we note that if z is some complex number such that |z| < 1, then
the Taylor series for —log(1 — z) is

> ,n 22 3
flog(l—z):zzzz+?+§+...

where log denotes the natural logarithm.

1
Proof. Note that ‘9‘ < 1. We have
>

log((s) =log [] ( )1

p prime
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Eml})

p prime

- 1.1 1.
- ps 2p23 3p33

p prime
1
-y Loy vyl
p prime pprimen>2
. 1. w2
Claim. Z Z —— is bounded above by 5
np

p prime n>2

Since

1 1 1
Z Ziz Z ﬁ+3 +4p L

pprimen>2 p prime

> il
2Ty Tt
pprimep P p

Z 1

m2\1—1
p prime p ! p

IA

1
<D
neN n
1 . 2 .
Z Z n—pn is bounded above by 5 We also see that this is bounded below

pprimen>2
by 0 since all terms of the series is positive. Therefore,

1 . 1
>, o= lim poey
p prime p sl p prime p
= lim 1 —
Jim og¢(5)— Y Y —

pprlmen>2

> lim log((s) G
1m 10 S)— —
s—1t & 6’

which diverges because log ((1) diverges. O
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Dirichlet Characters

Definition 3.1: Dirichlet Character

A Dirichlet chatacter mod m is a function, x : U, — C that is not
identically zero and satisfies x(ab) = x(a)x(b).

We extend y to all of Z by letting x(a) = 0 if ged(a, m) > 1 and periodicity, i.e.
x(a+m) = x(a)).

Corollary

Dirichlet characters are totally multiplicative. That is, x(ab) = x(a)x(b) for
all a, b € Z.

For every Dirichlet character, x(1) should be 1. This is because

so x(1) = 0 or 1. However, if x(1) = 0, then y is identically zero. Thus x(1) =1
for every Dirichlet character.

From now on, we use the notation xq for the principal chatacter, which is

(a) = 1 ged(a,m) =1
Xola) = 0 ged(a,m)>1"

Example 1

There are exactly two Dirichlet characters mod 3:

1 a=1 (mod3) 1 a=1 (mod 3)
xo(@) =91 a=2 (mod3) and xi(a)=4-1 a=2 (mod3).
0 a=0 (mod 3) 0 a=0 (mod3)

Example 2

There are exactly two Dirichlet characters mod 4:

1 a=1 (mod4) a=1 (mod4)
0 a=2 (mod4 0 a = mod 4
Xo(a) = B ( ) and xi(a) = ( ) .
1 a=3 (mod4) -1 a=3 (mod4)
0 a=0 (mod4) 0 a=0 (mod4)
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Example 3

There are exactly four Dirichlet characters mod 5:

1 a=1 (modb) 1 a (mod 5)

1 a=2 (mod?b) i  a=2 (modb)

xo(@) =491 a=3 (mod5), xi(a) =49 —i a=3 (mod?5)
1 a=4 (mod5) -1 a=4 (mod5)

0 a=0 (modb) 0 a=0 (mod?5)

1 a (mod 5) 1 a=1 (modb5)

-1 a=2 (modb) —i a=2 (modb)

x2(a) =< -1 a=3 (mod}5), x3(a)=149i a=3 (mod?5)
1 a=4 (modb5) -1 a=4 (mod5)

a=0 (mod 5) 0 a=0 (modH5)

= Definition 3.2: Dirichlet L-function

The Dirichlet L-function is defined as

Lisy =3 X0
n=1

~ Lenmo
L(s.x) = i X _ s (1- Xﬁ’))_l.
P
() - I e
pp H (12 )

p prime

B (1+x§§>+x§§j>+._.>(1+x<3>+x<32>+._.>_,.

x(2) |, xB) | x(2®) | x(5) | x(2)x(3)
2s 35 £ T T 6

x(2)  xB)  x@ x5 x(6)
28 + 3s + 48 5s 63
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_ f: x(n)

where the third last line follows from the unique prime factorization of positive
integers greater than 1. O

= Theorem 3.1

1
Z — diverges.

p=1 (mod 4)
p prime

Proof. We consider the natural log of L(1, x).

log L(1,x) =log ] <1X;p))

p prime

B ()

p prime

.S (x(p)+x(p22)+x(p3)+___)

D 2p

p prime

- > W,y s

p prime p prime n>2

We see that

BB LD SIS S SPLe

p prime n>2 pprime n>2 p prime n>2

") 2 2
is bounded by % and —. Then

by the triangle inequality, so Z Z x(p 6
np"

p prime n>2

lim log((s) 4+ log L(1, x) = Z "" Z Zi

s—1t

p prlme pprime n>2
x(p x(p )
IDIE-TDY D
p prime pprimen>2

1
=2 E —+c
p=1 (mod 4)
p prime

where c¢ is a bounded constant. Since the left-hand side diverges, the right side
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1
should also diverge, which implies that Z — diverges. O
p=1 (mod 4)
p prime
This is one of the proofs that there are infinitely many primes that are of the form
1 4 4n. Similar argument can be used for primes of the form 3 + 4n.

Theorem 3.2
1
Z — diverges.
p=3 (mod 4)
p prime
Proof.
Claim. lim+ log ¢(s) — log L(1, x) diverges.
s—1
It is sufficient to show that lim C(s) diverges. We have
s—1+ L(s,x)
1 1
Lis,x)= ), o > o
n=1 (mod 4) n=3 (mod 4)
1 1
=)= == > =
2|n n=3 (mod 4)
1 1
> _ - _ —
>((s) =D =2y —
2|n 4|n
1 2
= 1 _— = —
(1-53 - 2) <o
SO
¢(s) 4°

lim > lim ————
so1t L(s,x) — so1t 45 — 25 — 27

and this diverges. We have

1
IOgC(S)_IOgL(saX) =2 E 7S+C7
p=3 (mod 4) p
p prime

where c is a bounded constant. Letting s — 17, since the left hand side diverges,

1
Z — also diverges. O

p=3 (mod 4)
p prime

10
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Generalizations

4

Denote D, as the set of all Dirichlet characters modulo m. Note that U, forms a
group under multiplication, and D, also forms a group under the binary operation

(x1 * x2)(a) = x1(a)x2(a).

Theorem 4.1
|_There are exactly ¢(m) Dirichlet characters modulo m.

Solution Note that U,, has ¢(m) elements.

I Claim. U,, is isomorphic to D,,.

Let m = 2tp]flp’2€2 --pks. Then, U, = Ust x Up’fl X o+ee X Upz;.g.
e if t =1, then Us is generated by 1.
e if t =2, then Uy is generated by 3.

e if t > 2. then since 3 has order 2¢72, and -1 is not a power of 3, Uy is
generated by 3 and -1.

Also, we can find generators of each Upki because Upkl, Upkg, . Upks are cyclic.
(2 1 2 s

Finally, the mapping

2mily

2milyg

2mily
2mic TN 13
3%(—1)’gi g - gl (ewthe“’“’ll’76*"“2“,...,@“’(?53))

= (x(e); x(g1), x(g2), - - -5 x(9s))

=X

implies that U, is isomorphic to D,,.

Thus, U, and D, has the same cardinality, which is ¢(m).

Lemma

If x is a Dirichlet character mod m, then Y, the function that takes conjugate
values of x, is also a Dirichlet character.

Proof. We have

x(ab) = x(ab) = x(a)x(b) = x(a) - x(b) = X(a)X(b)-

Also, if ged(a,m) > 1, then x(a) = 0 = 0, and since

X(a+m) = x(a+m) = x(a) =X(a),

11
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X is also a Dirichlet character. O
Theorem 4.2
|_L(1, Xo) diverges.
Proof. We see that

Lo = ] (1_XU<p>>‘1

p prime ps
1 -1 0 -1
() T )
ptm plm

:g(s)-H<1_p18).

plm

1
Here, H (1 — S) should be finite since there are finite prime divisors of m, thus

p|m
it is a finite product of finite terms. Therefore

lim L(s, xo) = o0

s—1t
since ((s) diverges as s — 17. O
Lemma
©(m) n=1 mod m
> x(n) = 0 herw
<D otherwise.

Proof. Take any character 1. Then x(n) = ¥(n)y=t(n)x(n).

12
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| claim. w1 = (7 m)x(m) | x € D} =Dy

Note that the set {¥p=*(n)x(n) | x € D,,} also forms a group under the binary
operation of D,,,, with ¢ the identity. If ¢y ~! % xy1 = )~ % o, then x1 = x2 by the
left cancellation property. This gives that the set {1)=*(n)x(n) | x € D,,} is equal
to D,,.

We have
> xm)=¢n) > v n)x(n) =v(n) Y x(n),

XEDm XEDm XEDm,

which implies that either 1)(n) # 1 and Z x(n) =0, o0r¢(n) =1forally € D,,.
XED,

If n =1 (mod m), then x(n) =1 for all x € D,,. Thus

S xm) = 3 1= p(m)

XEDm, XEDm

I Claim. If n # 1 (mod m), then there is some x € D,, such that x(n) # 1.

If n 21 mod m, then there exists Iy, lo, ..., I, # 0 such that n = glfgé2 gl
Fix s € {1,2,...,r}, and take the character that has

o
X(gj)={w 7

ew(p?s) ] =3

This gives x(n) # 1, and hence Z x(n) =0, as desired. O
XEDm,

= Theorem 4.3

Z x(a—in) = {cp(m) n=a modm

<€D 0 otherwise.

Proof. If n = a (mod m), then a='n =1 (mod m), so Z x(a™tn) = o(m). If
XEDm,
n # a (mod m), then a='n # 1 (mod m), so Z x(a"n) = 0. ]
XEDm

Theorem 4.4
|_If X is any Dirichlet character mod m, then L(1,x) # 0.

13
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Proof. Recall that if x is a Dirichlet character, then  is also a Dirichlet character.
So L(s,x) = L(s, x) = L(s, x), which shows that the values of L(s, x) come in con-

jugate pairs and hence H L(s,x) is real. Since log L(s, x) Z Z x(p

bl
npns
XED, p prime n=1 P

we have

s S e = s Y Y S

XE]D) XGDm pprime n=1

= 2.2

p"=1 (mod m)n= 1
p prime

inLS

If we set s real and s > 1, then since the right hand side is real and nonnegative,
the left hand side should also be real nonnegative. This gives

Z log L(s,x) >0

XEDm
and thus
IT L0 >1
XEDm
Therefore L(s, x) # 0, and setting s — 11 gives L(1,x) # 0. O

Note that the proof is actually not complete: to finish the proof with stating that
L(s,x) # 0 as s — 17, we need to use the fact that the function L(s,x) has a
meromorphic continuation to {z € C | R(z) > 0}, with one simple pole at s = 1.
This part is omitted since it is out of our boundary to prove this fact.

Theorem 4.5

1
Z — diverges.
p

p=a (mod m)
p prime

Proof. We have

Yol Ly e

p=a (mod m) p pprime z€D,,

p prime
= Sy 2= 2 o

TE]DJm p prime

:% Z X(ail) Z X(p).

¥ x€D,, p prime p
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Recall that log L(s, x) Z X —|— Z Z X where Z Z o

p prime p prime n=2 p prime n=2
2 2

bounded by —% and F This tells us that

! 5 3 (@ los (L)

Sp(m XEDm,

=ﬁz H( X Wy 3 Al

XEDm, p prime p prime n=2

DD DI SR BRI D BE-L

m
Xe]D)mpprlme QO( ) XED, p prime n=2

= Y sy e Yy

XED, p prime n=2

p=a (mod m)
p prime

= Z 1-|—c

p=a (mod m)
p prime

where ¢ is bounded since it is a finite sum of bounded terms. Thus

> %:L > x(a™)log L(1,x) — ¢

m
p=a (mod m) 90( ) XED,
p prime

1
10gL(17 XO) +— Z X(a’_l) 10gL<17X) -G

1
@(m) p(m) Do}

1 1
and Z — would diverge to infinity unless Z x(a™ ) log L(1, x)

p=a (mod m) Sp(m) XEDm\{x0}

p prime
is real and diverges to negative infinity.

Claim. Z x(a ') log L(1, x) is real and does not diverge to negative
X€Dm\{xo0}
infinity.

Let D,, » be the set of nontrivial Dirichlet characters mod m that has only real
values, and D, ¢ the set of Dirichlet characters mod m that has complex values.
Then

> xtaHlogL(L,x) = Y x(a HlogL(1,x)+ > x(a ")log L(1,x).

XEDm \{xo0} XEDm r XEDm,c

15
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Here, Z x(a"')log L(1, x) does not diverge to negative infinity since L(1, ) #

XEDM,,R
0 for all x € D,, . For complex values, recall that if x is a Dirichlet character,

then  is also a Dirichlet character. So

X(a™")log L(1,%) = x(a=1) -log L(1, x) = x(a~1)log L(1, x).

This tells that the values of x(a~!)log L(1,x) come in conjugate pairs, and hence
Z x(a ') log L(1, x) is real. Since L(1,x) # 0, Z x(a™Y)log L(1, x) does

XEDm ¢ XEDm ¢
not diverge to negative infinity. Thus

> x@MHlogL(l,x)= Y x(aHlogL(l,x)+ Y x(a")logL(1,x)

XEDWL\{X()} Xe]D)?VL,]R XE]D)TYL,«‘C

is real which does not diverge to negative infinity. Therefore, in the formula

1 1 -1 1 —1
o= = Xola )log L(1,x0)+—— Y. x(a " log L(1,x)—c,
P w(m) olm) =

p=a (mod m)
p prime

the right hand side is real and diverges to positive infinity, so the left hand side
should also diverge to positive infinity, which completes the proof. O

This gives us the Dirichlet’s theorem, as desired.

Corollary : Dirichlet’s Theorem on Arithmetic Progressions

If ged(a,m) = 1, then there are infinitely many primes in the arithmetic
progression a + km.
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