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1
Contents at a Glance

Our goal is to prove the following theorem.

Theorem 1.1

If gcd(a, n) = 1, then there are infinitely many primes of the form on the
arithmetic progression a+ kn.

The proof is done by proving that
∑

p≡a (mod d)
p prime

1

p
diverges. It is sufficient to prove

the following since if there are finitely many primes of the form a + nd, then∑
p≡a (mod d)

p prime

1

p
should converge.

To prove the following, we introduce a multiplicative function χ : Un → C. This
is called a Dirichlet character.

Definition 1.1: Dirichlet Character

A Dirichlet chatacter mod m is a function, χ : Um → C that is not
identically zero and satisfies χ(ab) = χ(a)χ(b).

This definition can be extended to all of Z by letting χ(a) = 0 if gcd(a,m) > 1

and χ(a +m) = χ(a)). With Dirichlet characters, Riemann-Zeta functions, and

Dirichlet L-functions, we will prove that
∑

p≡a (mod d)
p prime

1

p
diverges.
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2
The Riemann-Zeta Function

Definition 2.1: Riemann-Zeta Function

The Riemann-Zeta function ζ : R → R>0 is defined as

ζ(s) =

∞∑
n=1

1

ns
.

We now want to look at for which values of s the function is defined. That is, for
which values of s the series converge. This can be found by the integral test.

Lemma : Integral Test

Suppose that f(x) is a continuous, positive, and decreasing function on the
interval [k,∞) for some k ∈ Z and let f(n) = an. Then∫ ∞

k

f(x) dx converges if and only if
∞∑

n=k

an converges.

Proof. Note that by shifting, it is sufficient to prove the case when k = 1.

Let f(x) be the red curve. The integral
∫ ∞

1

f(x) dx is equal to the area between

f(x) and the x-axis on the interval [1,∞), which is clearly greater than

∞∑
n=2

1 · an = 1 · a2 + 1 · a3 + 1 · a4 + · · · .

Furthermore, the area is less than

∞∑
n=1

1 · an = 1 · a1 + 1 · a2 + 1 · a3 + · · · .
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If
∫ ∞

1

f(x) dx diverges, then

∞∑
n=1

an >

∫ ∞

1

f(x) dx

will also diverge, and if
∫ ∞

1

f(x) dx converge, then

∞∑
n=1

an = a1 +

∞∑
n=2

< a1 +

∫ ∞

1

f(x) dx

will also converge since a1 is finite.

Theorem 2.1
∞∑

n=1

1

ns
converges if and only if s > 1. Thus, the domain of ζ(s) is s > 1.

Proof. It is sufficient to prove that
∞∑

n=1

1

n
diverges and

∞∑
n=1

1

ns
converges if s > 1.

We have
∞∑

n=1

1

n
= 1 +

1

2
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
+ · · ·

≥ 1 +
1

2
+

(
1

4
+

1

4

)
+

(
1

8
+

1

8
+

1

8
+

1

8

)
+ · · ·

= 1 +
1

2
+

1

2
+

1

2
+ · · · ,
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which goes to infinity. For s > 1, if we let f(x) = x−s,∫ ∞

1

x−s dx =
1

−s+ 1
x−s+1

∣∣∣∣∞
1

=
1

s− 1
.

Thus
∞∑

n=1

1

ns
converges for s > 1 by the integral test.

Lemma : Basel Problem

ζ(2) =
π2

6
.

Proof. We compute ζ(2) by approximating sinx as polynomials. The Taylor series
of sinx is

sinx =

∞∑
n=0

(−1)k

(2k + 1)!
x2k+1 = x− x3

3!
+
x5

5!
− x7

7!
+ · · · .

We have another way to find a polynomial expression of sinx. Since the roots of
sinx are · · · , −2π, −π, 0, π, 2π, · · · , we can express sinx as

sinx = ax(x− π)(x+ π)(x− 2π)(x+ 2π) · · · .

From the identity lim
x→0

sinx

x
= 1 , we can find a, and

sinx = x

(
1 +

x

π

)(
1− x

π

)(
1 +

x

2π

)(
1− x

2π

)
· · ·

= x

(
1− x2

π2

)(
1− x2

4π2

)(
1− x2

9π2

)
· · · .

Therefore, we get

sinx = x− x3

3!
+
x5

5!
− x7

7!
+ · · · = x

(
1− x2

π2

)(
1− x2

4π2

)(
1− x2

9π2

)
· · · .

Comparing the coefficients of x3, we get

− 1

3!
= − 1

π2
− 1

4π2
− 1

9π2
= − 1

π2

(
1 +

1

22
+

1

32
+ · · ·

)
.

So
∞∑

n=1

1

n2
= 1 +

1

22
+

1

32
+ · · · = π2

6
.

4



Dirichlet’s Theorem on Arithmetic Progressions Joshua Im (December 3, 2024)

Lemma

ζ(s) =

∞∑
n=1

1

ns
=

∏
p prime

(
1− 1

ps

)−1

.

Proof. Recall the sum of geometric series formula

1 + r + r2 + · · · = 1

1− r

if |r| < 1. Since
∣∣∣∣ 1ps
∣∣∣∣ < 1, we have

∏
p prime

(
1− 1

ps

)−1

=
∏

p prime

(
1 +

1

ps
+

1

p2s
+ · · ·

)

=

(
1 +

1

2s
+

1

22s
+ · · ·

)(
1 +

1

3s
+

1

32s
+ · · ·

)(
1 +

1

5s
+

1

52s
+ · · ·

)
· · ·

= 1 +
1

2s
+

1

3s
+

1

4s
+ · · ·

=

∞∑
n=1

1

ns
.

where the second last line follows from the unique prime factorization of positive
integers greater than 1.

Theorem 2.2∑
p prime

1

p
diverges.

Before the proof, we note that if z is some complex number such that |z| < 1, then
the Taylor series for − log(1− z) is

− log(1− z) =

∞∑
n=1

zn

n
= z +

z2

2
+
z3

3
+ · · ·

where log denotes the natural logarithm.

Proof. Note that
∣∣∣∣ 1ps
∣∣∣∣ < 1. We have

log ζ(s) = log
∏

p prime

(
1− 1

ps

)−1
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= −
∑

p prime

log

(
1− 1

ps

)

=
∑

p prime

(
1

ps
+

1

2p2s
+

1

3p3s
+ · · ·

)

=
∑

p prime

1

ps
+
∑

p prime

∑
n≥2

1

npns

Claim.
∑

p prime

∑
n≥2

1

npn
is bounded above by

π2

6
.

Since ∑
p prime

∑
n≥2

1

npn
=

∑
p prime

1

2p2
+

1

3p3
+

1

4p4
+ · · ·

≤
∑

p prime

1

p2
+

1

p3
+

1

p4
+ · · ·

=
∑

p prime

1

p2

(
1

1− 1
p

)

≤
∑

p prime

1

(p− 1)2

<
∑
n∈N

1

n2
,

∑
p prime

∑
n≥2

1

npn
is bounded above by

π2

6
. We also see that this is bounded below

by 0 since all terms of the series is positive. Therefore,∑
p prime

1

p
= lim

s→1+

∑
p prime

1

ps

= lim
s→1+

log ζ(s)−
∑

p prime

∑
n≥2

1

npn

> lim
s→1+

log ζ(s)− π2

6
,

which diverges because log ζ(1) diverges.
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3
Dirichlet Characters

Definition 3.1: Dirichlet Character

A Dirichlet chatacter mod m is a function, χ : Um → C that is not
identically zero and satisfies χ(ab) = χ(a)χ(b).

We extend χ to all of Z by letting χ(a) = 0 if gcd(a,m) > 1 and periodicity, i.e.
χ(a+m) = χ(a)).

Corollary

Dirichlet characters are totally multiplicative. That is, χ(ab) = χ(a)χ(b) for
all a, b ∈ Z.

For every Dirichlet character, χ(1) should be 1. This is because

χ(1)2 = χ(12) = χ(1),

so χ(1) = 0 or 1. However, if χ(1) = 0, then χ is identically zero. Thus χ(1) = 1

for every Dirichlet character.

From now on, we use the notation χ0 for the principal chatacter, which is

χ0(a) =

{
1 gcd(a,m) = 1

0 gcd(a,m) > 1
.

Example 1
There are exactly two Dirichlet characters mod 3:

χ0(a) =


1 a ≡ 1 (mod 3)

1 a ≡ 2 (mod 3)

0 a ≡ 0 (mod 3)

and χ1(a) =


1 a ≡ 1 (mod 3)

−1 a ≡ 2 (mod 3)

0 a ≡ 0 (mod 3)

.

Example 2
There are exactly two Dirichlet characters mod 4:

χ0(a) =


1 a ≡ 1 (mod 4)

0 a ≡ 2 (mod 4)

1 a ≡ 3 (mod 4)

0 a ≡ 0 (mod 4)

and χ1(a) =


1 a ≡ 1 (mod 4)

0 a ≡ 2 (mod 4)

−1 a ≡ 3 (mod 4)

0 a ≡ 0 (mod 4)

.
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Example 3
There are exactly four Dirichlet characters mod 5:

χ0(a) =



1 a ≡ 1 (mod 5)

1 a ≡ 2 (mod 5)

1 a ≡ 3 (mod 5)

1 a ≡ 4 (mod 5)

0 a ≡ 0 (mod 5)

, χ1(a) =



1 a ≡ 1 (mod 5)

i a ≡ 2 (mod 5)

−i a ≡ 3 (mod 5)

−1 a ≡ 4 (mod 5)

0 a ≡ 0 (mod 5)

χ2(a) =



1 a ≡ 1 (mod 5)

−1 a ≡ 2 (mod 5)

−1 a ≡ 3 (mod 5)

1 a ≡ 4 (mod 5)

0 a ≡ 0 (mod 5)

, χ3(a) =



1 a ≡ 1 (mod 5)

−i a ≡ 2 (mod 5)

i a ≡ 3 (mod 5)

−1 a ≡ 4 (mod 5)

0 a ≡ 0 (mod 5)

.

Definition 3.2: Dirichlet L-function

The Dirichlet L-function is defined as

L(s, χ) =

∞∑
n=1

χ(n)

ns
.

Lemma

L(s, χ) =

∞∑
n=1

χ(n)

ns
=

∏
p prime

(
1− χ(p)

ps

)−1

.

Proof. We have

∏
p prime

(
1− χ(p)

ps

)−1

=
∏

p prime

(
1 +

χ(p)

ps
+
χ(p)2

p2s
+ · · ·

)

=
∏

p prime

(
1 +

χ(p)

ps
+
χ(p2)

p2s
+ · · ·

)

=

(
1 +

χ(2)

2s
+
χ(22)

22s
+ · · ·

)(
1 +

χ(3)

3s
+
χ(32)

32s
+ · · ·

)
· · ·

= 1 +
χ(2)

2s
+
χ(3)

3s
+
χ(22)

4s
+
χ(5)

5s
+
χ(2)χ(3)

6s
+ · · ·

= 1 +
χ(2)

2s
+
χ(3)

3s
+
χ(4)

4s
+
χ(5)

5s
+
χ(6)

6s
+ · · ·
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=

∞∑
n=1

χ(n)

ns
.

where the third last line follows from the unique prime factorization of positive
integers greater than 1.

Theorem 3.1∑
p≡1 (mod 4)

p prime

1

p
diverges.

Proof. We consider the natural log of L(1, χ).

logL(1, χ) = log
∏

p prime

(
1− χ(p)

p

)−1

=
∑

p prime

− log

(
1− χ(p)

p

)

=
∑

p prime

(
χ(p)

p
+
χ(p2)

2p2
+
χ(p3)

3p3
+ · · ·

)

=
∑

p prime

χ(p)

p
+
∑

p prime

∑
n≥2

χ(pn)

npn

We see that ∣∣∣∣∣∣
∑

p prime

∑
n≥2

χ(pn)

npn

∣∣∣∣∣∣ ≤
∑

p prime

∑
n≥2

|χ(pn)|
npn

≤
∑

p prime

∑
n≥2

1

npn

by the triangle inequality, so
∑

p prime

∑
n≥2

χ(pn)

npn
is bounded by −π

2

6
and

π2

6
. Then

lim
s→1+

log ζ(s) + logL(1, χ) =
∑

p prime

1

p
+
∑

p prime

∑
n≥2

1

npn

+
∑

p prime

χ(p)

p
+
∑

p prime

∑
n≥2

χ(pn)

npn

= 2
∑

p≡1 (mod 4)
p prime

1

p
+ c

where c is a bounded constant. Since the left-hand side diverges, the right side

9
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should also diverge, which implies that
∑

p≡1 (mod 4)
p prime

1

p
diverges.

This is one of the proofs that there are infinitely many primes that are of the form
1 + 4n. Similar argument can be used for primes of the form 3 + 4n.

Theorem 3.2∑
p≡3 (mod 4)

p prime

1

p
diverges.

Proof.

Claim. lim
s→1+

log ζ(s)− logL(1, χ) diverges.

It is sufficient to show that lim
s→1+

ζ(s)

L(s, χ)
diverges. We have

L(s, χ) =
∑

n≡1 (mod 4)

1

ns
−

∑
n≡3 (mod 4)

1

ns

= ζ(s)−
∑
2|n

1

ns
− 2

∑
n≡3 (mod 4)

1

ns

≥ ζ(s)−
∑
2|n

1

ns
− 2

∑
4|n

1

ns

=

(
1− 1

2s
− 2

4s

)
ζ(s),

so
lim

s→1+

ζ(s)

L(s, χ)
≥ lim

s→1+

4s

4s − 2s − 2
,

and this diverges. We have

log ζ(s)− logL(s, χ) = 2
∑

p≡3 (mod 4)
p prime

1

ps
+ c,

where c is a bounded constant. Letting s→ 1+, since the left hand side diverges,∑
p≡3 (mod 4)

p prime

1

p
also diverges.
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4
Generalizations

Denote Dm as the set of all Dirichlet characters modulo m. Note that Um forms a
group under multiplication, and Dm also forms a group under the binary operation
(χ1 ∗ χ2)(a) = χ1(a)χ2(a).

Theorem 4.1

There are exactly φ(m) Dirichlet characters modulo m.

Solution Note that Um has φ(m) elements.

Claim. Um is isomorphic to Dm.

Let m = 2tpk1
1 p

k2
2 · · · pks

s . Then, Um = U2t × U
p
k1
1

× · · · × Upks
s

.

• if t = 1, then U2 is generated by 1.

• if t = 2, then U4 is generated by 3.

• if t > 2, then since 3 has order 2t−2, and -1 is not a power of 3, U2t is
generated by 3 and -1.

Also, we can find generators of each U
p
ki
i

because U
p
k1
1

, U
p
k2
2

, . . ., Upks
s

are cyclic.
Finally, the mapping

3a(−1)bgl11 g
l2
2 · · · glss 7→

(
e

2πic
φ(2t) , e

2πil1

φ(p
k1
1 ) , e

2πil2

φ(p
k2
2 ) , . . . , e

2πils

φ(p
ks
s )

)

7→ (χ(c), χ(g1), χ(g2), . . . , χ(gs))

7→ χ

implies that Um is isomorphic to Dm.

Thus, Um and Dm has the same cardinality, which is φ(m).

Lemma

If χ is a Dirichlet character mod m, then χ, the function that takes conjugate
values of χ, is also a Dirichlet character.

Proof. We have

χ(ab) = χ(ab) = χ(a)χ(b) = χ(a) · χ(b) = χ(a)χ(b).

Also, if gcd(a,m) > 1, then χ(a) = 0 = 0, and since

χ(a+m) = χ(a+m) = χ(a) = χ(a),

11
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χ is also a Dirichlet character.

Theorem 4.2

L(1, χ0) diverges.

Proof. We see that

L(s, χ0) =
∏

p prime

(
1− χ0(p)

ps

)−1

=
∏
p∤m

(
1− 1

ps

)−1∏
p|m

(
1− 0

ps

)−1

=
∏
p∤m

(
1− 1

ps

)−1

=
∏
p∤m

(
1− 1

ps

)−1

·

∏
p|m

(
1− 1

ps

)−1

∏
p|m

(
1− 1

ps

)−1

=
∏

p prime

(
1− 1

ps

)−1

·
∏
p|m

(
1− 1

ps

)

= ζ(s) ·
∏
p|m

(
1− 1

ps

)
.

Here,
∏
p|m

(
1− 1

ps

)
should be finite since there are finite prime divisors of m, thus

it is a finite product of finite terms. Therefore

lim
s→1+

L(s, χ0) = ∞

since ζ(s) diverges as s→ 1+.

Lemma

∑
χ∈Dm

χ(n) =

{
φ(m) n ≡ 1 mod m

0 otherwise.

Proof. Take any character ψ. Then χ(n) = ψ(n)ψ−1(n)χ(n).

12
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Claim. ψ−1(n)Dm = {ψ−1(n)χ(n) | χ ∈ Dm} = Dm.

Note that the set {ψ−1(n)χ(n) | χ ∈ Dm} also forms a group under the binary
operation of Dm, with ψ the identity. If ψ−1 ∗χ1 = ψ−1 ∗χ2, then χ1 = χ2 by the
left cancellation property. This gives that the set {ψ−1(n)χ(n) | χ ∈ Dm} is equal
to Dm.

We have ∑
χ∈Dm

χ(n) = ψ(n)
∑

χ∈Dm

ψ−1(n)χ(n) = ψ(n)
∑

χ∈Dm

χ(n),

which implies that either ψ(n) ̸= 1 and
∑

χ∈Dm

χ(n) = 0 , or ψ(n) = 1 for all ψ ∈ Dm.

If n ≡ 1 (mod m), then χ(n) = 1 for all χ ∈ Dm. Thus∑
χ∈Dm

χ(n) =
∑

χ∈Dm

1 = φ(m).

Claim. If n ̸≡ 1 (mod m), then there is some χ ∈ Dm such that χ(n) ̸= 1.

If n ̸≡ 1 mod m, then there exists l1, l2, . . ., lr ̸= 0 such that n = gl11 g
l2
2 · · · glrr .

Fix s ∈ {1, 2, . . . , r}, and take the character that has

χ(gj) =

{
1 j ̸= s

e
2πi

φ(p
ks
s ) j = s

This gives χ(n) ̸= 1, and hence
∑

χ∈Dm

χ(n) = 0, as desired.

Theorem 4.3

∑
χ∈Dm

χ(a−1n) =

{
φ(m) n ≡ a mod m

0 otherwise.

Proof. If n ≡ a (mod m), then a−1n ≡ 1 (mod m), so
∑

χ∈Dm

χ(a−1n) = φ(m). If

n ̸≡ a (mod m), then a−1n ̸≡ 1 (mod m), so
∑

χ∈Dm

χ(a−1n) = 0.

Theorem 4.4

If χ is any Dirichlet character mod m, then L(1, χ) ̸= 0.

13
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Proof. Recall that if χ is a Dirichlet character, then χ is also a Dirichlet character.
So L(s, χ) = L(s, χ) = L(s, χ), which shows that the values of L(s, χ) come in con-

jugate pairs and hence
∏

χ∈Dm

L(s, χ) is real. Since logL(s, χ) =
∑

p prime

∞∑
n=1

χ(pn)

npns
,

we have

1

φ(m)

∑
χ∈Dm

logL(s, χ) =
1

φ(m)

∑
χ∈Dm

∑
p prime

∞∑
n=1

χ(pn)

npns

=
∑

pn≡1 (mod m)
p prime

∑
n=1

1

npns

If we set s real and s > 1, then since the right hand side is real and nonnegative,
the left hand side should also be real nonnegative. This gives∑

χ∈Dm

logL(s, χ) ≥ 0

and thus ∏
χ∈Dm

L(s, χ) ≥ 1.

Therefore L(s, χ) ̸= 0, and setting s→ 1+ gives L(1, χ) ̸= 0.

Note that the proof is actually not complete: to finish the proof with stating that
L(s, χ) ̸= 0 as s → 1+, we need to use the fact that the function L(s, χ) has a
meromorphic continuation to {z ∈ C | ℜ(z) ≥ 0}, with one simple pole at s = 1.
This part is omitted since it is out of our boundary to prove this fact.

Theorem 4.5∑
p≡a (mod m)

p prime

1

p
diverges.

Proof. We have

∑
p≡a (mod m)

p prime

1

p
=

1

φ(m)

∑
p prime

∑
x∈Dm

χ(a−1p)

p

=
1

φ(m)

∑
x∈Dm

∑
p prime

χ(a−1p)

p

=
1

φ(m)

∑
x∈Dm

χ(a−1)
∑

p prime

χ(p)

p
.

14
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Recall that logL(s, χ) =
∑

p prime

χ(p)

ps
+
∑

p prime

∞∑
n=2

χ(pn)

npns
, where

∑
p prime

∞∑
n=2

χ(pn)

npns
is

bounded by −π
2

6
and

π2

6
. This tells us that

=
1

φ(m)

∑
χ∈Dm

χ(a−1) logL(1, χ)

=
1

φ(m)

∑
χ∈Dm

χ(a−1)

( ∑
p prime

χ(p)

p
+
∑

p prime

∞∑
n=2

χ(pn)

npn

)

=
1

φ(m)

∑
χ∈Dm

∑
p prime

χ(a−1p)

p
+

1

φ(m)

∑
χ∈Dm

χ(a−1)
∑

p prime

∞∑
n=2

χ(pn)

npn

=
∑

p≡a (mod m)
p prime

1

p
+

1

φ(m)

∑
χ∈Dm

χ(a−1)
∑

p prime

∞∑
n=2

χ(pn)

npn

=
∑

p≡a (mod m)
p prime

1

p
+ c

where c is bounded since it is a finite sum of bounded terms. Thus∑
p≡a (mod m)

p prime

1

p
=

1

φ(m)

∑
χ∈Dm

χ(a−1) logL(1, χ)− c

=
1

φ(m)
logL(1, χ0) +

1

φ(m)

∑
χ∈Dm\{χ0}

χ(a−1) logL(1, χ)− c,

and
∑

p≡a (mod m)
p prime

1

p
would diverge to infinity unless

1

φ(m)

∑
χ∈Dm\{χ0}

χ(a−1) logL(1, χ)

is real and diverges to negative infinity.

Claim.
∑

χ∈Dm\{χ0}

χ(a−1) logL(1, χ) is real and does not diverge to negative

infinity.

Let Dm,R be the set of nontrivial Dirichlet characters mod m that has only real
values, and Dm,C the set of Dirichlet characters mod m that has complex values.
Then∑
χ∈Dm\{χ0}

χ(a−1) logL(1, χ) =
∑

χ∈Dm,R

χ(a−1) logL(1, χ)+
∑

χ∈Dm,C

χ(a−1) logL(1, χ).

15
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Here,
∑

χ∈Dm,R

χ(a−1) logL(1, χ) does not diverge to negative infinity since L(1, χ) ̸=

0 for all χ ∈ Dm,R. For complex values, recall that if χ is a Dirichlet character,
then χ is also a Dirichlet character. So

χ(a−1) logL(1, χ) = χ(a−1) · logL(1, χ) = χ(a−1) logL(1, χ).

This tells that the values of χ(a−1) logL(1, χ) come in conjugate pairs, and hence∑
χ∈Dm,C

χ(a−1) logL(1, χ) is real. Since L(1, χ) ̸= 0,
∑

χ∈Dm,C

χ(a−1) logL(1, χ) does

not diverge to negative infinity. Thus∑
χ∈Dm\{χ0}

χ(a−1) logL(1, χ) =
∑

χ∈Dm,R

χ(a−1) logL(1, χ)+
∑

χ∈Dm,C

χ(a−1) logL(1, χ)

is real which does not diverge to negative infinity. Therefore, in the formula∑
p≡a (mod m)

p prime

1

p
=

1

φ(m)
χ0(a

−1) logL(1, χ0)+
1

φ(m)

∑
χ∈Dm\{χ0}

χ(a−1) logL(1, χ)−c,

the right hand side is real and diverges to positive infinity, so the left hand side
should also diverge to positive infinity, which completes the proof.

This gives us the Dirichlet’s theorem, as desired.

Corollary : Dirichlet’s Theorem on Arithmetic Progressions

If gcd(a,m) = 1, then there are infinitely many primes in the arithmetic
progression a+ km.

5
Citations

1. Apostol, T. M. (2006). Introduction to analytic number theory. Springer.

2. Bateman, P. T., & Diamond, H. G. (2009). Analytic number theory: An
introductory course. World Scientific.

3. Davenport, H., & Montgomery, H. (2009). Multiplicative number theory.
Springer.

16


