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The Real Numbers

1.1 Sets and Operations on Sets

Define the following sets: N, Z, Q, and R.
Define the following set operations: intersection, union, and complement.

= Theorem 1.1
e AN(BUC)=(ANB)U(ANC)
e AUBNC)=(AUB)N(AUCQC)
e C\(AUB)=(C\A)N(C\B)

( =(
e C\(ANB)=(C\A)U(C\ B)

™ Theorem 1.2: De Morgan’s Law

(AUB)t = AN BC and (AN B)t = 4% U BC.

= Definition 1.1: Cartesian Product

Define the cartesian product of sets A and B.

Ax B={(a,b) |ac A be B}

1.2 Functions

= Theorem 1.3
o f(A1UA) = f(A1) U f(A2)
o f(A1NA) C f(A1)N f(A2)

= Theorem 1.4
Let f: A — B. Then,
o f[THB1UBy) = fH(B1)U f1(B2)
o f[TH(B1NB2) = f~H(Bi)N f~1(B2)
o f(B\B1)=A\f"1(B1)
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e one-to-one: injective
e onto: subjective

e both: bijective

1.3 Mathematical Induction

= Theorem 1.5: Mathematical Induction
For each n € N, ler P(n) be a statement about the positive integer n. If
e P(1) is true
e P(k+1) is true whenever P(k) is true

then P(n) is true for all n € N.

— Theorem 1.6: Well-Ordering Principle

Every nonempty subset of N has a smallest element.

= Theorem 1.7: Mathematical Induction, part 2
For each n € N, ler P(n) be a statement about the positive integer n. If
e P(1) is true

e For k > 1, P(k) is true whenever P(j) is true for all positive integers
j<k

then P(n) is true for all n € N.
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1.4 The Least Upper Bound Property

= Definition 1.2: Field
A field F is a set with two operations, + and - such that
1. Ifa,beF, thena+beFanda-beF.

2. The operations are commutative: Va, b € I,

a+b=b+aanda-b=">-a.

3. The operations are associative: Va, b, c € T,

a+(b+c)=(a+b)+canda-(b-¢c)=(a-b)-c.

4. There exists an identity element 0 such that Va € F, a + 0 = a.
5. There exists an identity element 1 such that Va € F, a -1 = a.
Va € F, there exists an inverse element (—a) such that a + (—a) = 0.

Ya € F, there exists an inverse element a~! such that a -a=! = 1.

® N>

The distributive property: Va, b, c € F,

a-(b+c)=a-b+a-c.

= Definition 1.3: Order Properties

e Ol: Ifa, be P, thena+bePanda-beclP.

e If a € R then one and only one of the following hold:

a€lP, —aeP, a=0.

The positive real numbers satisfy the order properties.

= Definition 1.4: Ordered Field

Any field F with a nonempty subset satisfying the order properties are called
an ordered field.
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Least Upper Bound of a Set

Definition 1.5: Bounded Above

A subset E of R is bounded above if there exists 8 € R such that Va € E,
x < . Such a 8 is called an upper bound.

We define bounded below and lower bound similarly. A set E is bounded if E is
bounded both above and below.

= Definition 1.6: Least Upper Bound

Let E be a nonempty subset of R that is bounded above. An element a € R
is called the least upper bound or supremum of FE if

e « is an upper bound of F

e if 5 € R satisfies 5 < «, then S is not an upper bound of E.

The second condition is equivalent to: a < § for all upper bounds 8 of E. We
write o = sup E.

The greatest lower bound or infimum is defined similarly, and is denoted by inf E.

Theorem 1.8

Let A be a nonempty subset of R that is bounded above. An upper bound
«a of A is the supremum of A if and only if for every § < a, there exists an
element z € A such that

f<zx<a.

Proof. (=) Suppose a = sup A. If 8 < «, then § is not an upper bound of A.
Thus, there exists an element x in A such that x > 8. On the other hand, since «
is an upper bound of A4, z < a.

(<) If « is an upper bound of A satisfying the stated condition, then every 8 < «
is not an upper bound of A. Thus « = sup A. |

|— Theorem 1.9: Least Upper Bound Property

Every nonempty subset of R that is bounded above has a supremum in R.

Similarly, every nonempty subset of R that is bounded below has an infimum in
R.

Definition 1.7: Interval

A subset J of R is an interval if whenever x, y € J with x < y, then every
t satisfying x <t <y isin J.

We define the following specific intervals: open interval, closed interval, half-open
(half-closed) intervals, and infinite intervals.
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1.5 Consequences of the Least Upper Bound Property -

|_ Theorem 1.10: Archimedian Property

If x, y € R and = > 0, then there exists a positive integer n such that nz > y.

Proof. Assume y > 0. We prove by contradiction. Let
A={nz|neN}

If the result is false, then nz <y for Vn € N, so y is an upper bound for A. Since
A # (0, Ahas a supremum in R. Let o = sup A. Since z > 0, a«—x < . Therefore,
« — x is not an upper bound and this there exists an element of A, say mx such
that

a—r < me.

But then o < (m+1)z, which contradicts that « is an upper bound of A. Therefore,
In such that nz > y. |

Corollary

Given € > 0, In such that ne > 1.

Theorem 1.11

If z, y € R and = < y, then there exists r € Q such that

r<<r<y.

Proof. Assume x > 0. Since y — x > 0, In > 0 such that
n(y—x) >1orny > 1+ na.
also, the set {k € N | k > nz} is nonempty. Then by WOP, Im € N such that
m—1<nzr<m.

Therefore,
nr<m<14+nx <ny,

and
m
r< — <uy.
n

Ifz <0and y >0, r =0 works. If z < y < 0, then by the above there exists
r € Q such that —y <r < —z,ie. z < —1r <y. |
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Theorem 1.12
|_Let x> 0 and n € N. Then 3ly € R such that y" = .

The proof will be postponed until a later section. For the unique y, we use the
notation y = T

Corollary

If a, b>0and n € N, then (ab)= = awbw.

Proof is done assuming the theorem.

Proof. Let a = aw and B8 = bw. Then, ab = a"f" = (af)™. By uniqueness,
af = (ab)w. |
Exercise 1 (1-5-6)

Prove the following:

1. Prove that between any two rational numbers, there exists an irrational
number.

2. Prove that between any two real numbers, there exists an irrational num-
ber.

1.6 Countable and Uncountable Sets

= Definition 1.8: Sets of the Same Cardinality

Two sets A and B are said to have the same cardinality if 3 a bijective
function f : A — B, and denote A ~ B.

= Definition 1.9: Finite Set

A set A is finite if A~ {1,2,--- ,n} for some n € N. A set is infinite if it’s
not finite.

= Definition 1.10: Countable Set

A set A is countable if A ~ N. A set is uncountable if it is neither finite
nor countable.

Throughout this lecture, we say at most countable for sets that are either finite or
countable.
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Theorem 1.13
|_Z is countable.

Proof. Define f : N — Z by

E 2|n

Then, since f is bijective, Z is countable. |

Theorem 1.14
|_N x N is countable.
Proof. The function f : Nx N — N defined by f(m,n) = 2™~(2n— 1) is bijective.
Therefore, N ~ N x N, and N x N is countable. |

Definition 1.11: Sequence
|_A function f: N — A is called a sequence in A.

We use the notation z, = f(n) (the nth term of the sequence), and {x,,}.

= Definition 1.12: Enumeration

Let A be a countable set and f : N— — A be a bijective function. Then the
sequence f is called an enumeration of A.

= Theorem 1.15

Every infinite subset of a countable set is countable.

Proof. Let A be a countable set and {x,} an enumeration of A. Suppose F is an
infinite subset of A. It is sufficient to construct a bijective function f : N — E.

Since B = {n € N | z, € E} is nonempty, 3 the minimum n; of B by the
well-ordering principle. We define f(1) = z,. Having chosen ni, ..., ng_1, we
find ny = min{n > ng_1 | z, € E} which exists by the WOP again. We define
f(k) = zp, . Since E is infinite, f is defined on N. We now prove that f is bijective.

First, f is one-to-one since whenever m > k, n,, > ny. This gives if m # k, then
f(m) # f(k). Also, f is onto since for any x = z; € E, 3k € N such that nj = j,
and hence f(k) = z,, =z; = x. |



Real Analysis 1 Joshua Im (March 5 - June 18, 2024)

Theorem 1.16
|_If f maps N onto A, then A is at most countable.

Proof. If A is finite, the proof is trivial, so we assume that A is infinite. We
also assume that f is not injective (one-to-one). Now, for each a € A, the set
f~1(a) = {n € N| f(n) = a} has the minimum n, by the well ordering principle.
Define a map g : A — N by g(a) = n,. Then, g(A) is a subset of N. Thus, ¢ is a
one-to-one function from A onto an infinite subset of N. By the previous theorem,
A is countable. [

Definition 1.13: Indexed Families of Sets

Let A and X be nonempty sets. A function f : A — P(X) is called an
indexed family or subsets of X with an index set A.

We denote f(«) by E, for each a € A, and f by {Eq4}aca.

Example 1
Let I,, = (0, 1) for each n € N. Then. {I,,}52, is a sequence of subsets in R.

Since I, C I, for ¥n € N, we have | J I, = I;. Show that (7] I, = 0.

n=1 n=1
o0
Solution Assume not. Then, Jz € ﬂ I,,ie. 0<z< % for all n € N. However, by
n=1

the Archimedean property, Im € N such that ma > 1 which yields a contradiction.

Exercise 2

Let E, = {r e Q|0 <r <z} for each z € (0,1). It is trivial to see that
|J E.=Ei. Showthat () E,={0}.

z€(0,1) z€(0,1)

= Theorem 1.17

Let {Es}aca be a family of subsets of X and EF C X. Then

C
° (U Ea> = ﬂ Eg
a€cA a€cA

C
. (ﬂ Ea> J EE
acA acA

10
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— Theorem 1.18
Let f: X — Y be a function and let A # .

o If {E,} is a family of subsets of X, then
F(UE.) =UsE)
F(NE) €N #E.
e If {B,} is a family of subsets of Y, then
7 (UBe) =Usr @)
7 (NBa) =N (Bo).

The Countability of Q

(oo}
Let E,, = {T;m € Z} for each n € N. Then, Q = U FE,,. Note that each F, is
n
n=1
countable.

Theorem 1.19

o)
If {E,}52, is a sequence of countable sets, then the set S = U E,, is count-
n=1

able.

Proof. Let E,, = {zpk;k = 1,2,---} be an enumeration of E, for each n € N.
Define a function b : N x N — § by h(n, k) = x, . Then h is a mapping of N x N
onto S. Since N x N ~ N, 3 a bijective function ¢ : N — N x N. Thus, hog is a
mapping of N onto S. Therefore, S is at most countable. Since S is infinite, .S is
countable. |

Corollary : Countability of Q

Q is countable.

The Uncountability of R
Theorem 1.20: Cantor
|_The closed interval [0, 1] is uncountable.

11
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Proof. We use the Cantor’s diagonal argument. Clearly, I = [0,1] is an infinite set
since I contains infinitely many rational numbers. It is enough to show that every
countable subset of I is a proper subset of I.

Let E = {x,;n=1,2,---} be a countable subset of I.

I Claim. There exists a number y € I such that y ¢ E.

Notice that each x, has a decimal expansion
Tp = 0.2p,1%n 2T 3 - .

where z,, ;, € {0,1,---,9} for each k € N. Define

y=0.9192y3" -,
where
6 Tpn<5H
Yn = .
! 3 Xpn >0

Then, y € [0, 1] and it doesn’t have a different decimal expansion. Moreover, since
Yn F Tnn for each n € N, y cannot be z,, for any n € N. Therefore, y ¢ E, and
this completes the proof. |

Theorem 1.21

If A is the set of all sequences whose elements are 0 or 1, then A is uncount-
able.

Proof. Let E = {sp;n =1,2,---} be a countable subset of A. We define a new
sequence S : N x {0,1} by

0 sk(k)=

s(k):l—sk(k):{l s (k):(l).

Clearly, s € A. However, since s(k) # si(k) for all k € N, we have s # s,, for any
n € N. Thus, S ¢ E. [

Exercise 3

If A and B are uncountable sets, then does this mean A ~ B? The general
answer is no, and this tells that the 'uncountable’ can be divided again as
’infinite’ is divided to ’countable’ and 'uncountable’. For example, if A is an
uncountable set, then A ¢ P(A). Prove this result.

12
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Note If A C R is an infinite subset, then does this mean A ~ N or A ~
[0,1]? This hypothesis is called the continuum hypothesis, and it was the first
of Hilbert’s 23 problems. The answer is: if cannot be proved or disproved under
ZFC (Zermelo-Fraenkel set theory with the axiom of choice), proposed by Kurt
Godel and Paul Cohen.

13
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Topology of the Real Line

2.1 Metric Spaces

The absolute value is defined as usual, and note the triangle inequality.

= Theorem 2.1: Triangle Inequality

lz+y| < |z + |yl

= Definition 2.1: Metric/Distance Function

Let X be a nonempty set. A function d : X x X — R is called a met-
ric(distance) function on X if

e d(z,y) >0for Vo, ye X
o dlz,y)=0&ax=y

o d(z,y)
o d(z,y)

x,y) = d(y,x) for Vo, y € X
x,y) < d(z,z) 4+ d(z,y) for Vo, y, z € X.
Example 1
d(z,y) = | — y| is a metric on R. Let =z = (z1,22, -+ ,2,) and y =

(ylﬂ Y2, 7yn) eR” and define

n 1
(0 s — il?)” peflo0)

max{|a:1 —yﬂ,"' a|xn _yn|} p=0

dp(2,y) = |z —ylp = {

The first three axioms are trivial, but it is not easy to prove the fourth, the
triangle inequality. For p = 2, the triangle inequality can be proved by Cauchy-
Schwarz theorem.

Example 2

Let X be the set of all bounded real-valued functions on A(# @)). We say that
a function f: A — R is bounded if 3M > 0 such that |f(z) < M for Va € A.
For f, g € X, we define d(f, g) = sup{|f(z) — g(x)| | = € A}. Since

e 0<[f(z) —g(@)| < |f(2)]+ |g(z)| < 2M for Vo € A
e d(f,9) =0« f=gsince |f(z) — g(x)| < d(f,g) for Vo € A
e d(f,9)=d(g,[)

14
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The first three conditions are satisfied. For the triangular inequality, for f, g,
and h € X and =z € A, we have

[f(x) = g(2)| < [f(2) = h(z)| + [h(x) — g(z)]
< d(f,h) +d(h, g),

and hence d(f, g) < d(f,h) +d(h,g), d is a metric on X.

2.2 Open and Closed Sets

= Definition 2.2: Neighborhood

Let (X, d) be a metric space. For ¢ > 0 and p € X, the set
Ne(p) ={z e X [ d(p,x) <¢}

is called an e-neighborhood of p.

= Definition 2.3: Interior Point

Let £ C X. A point p € FE is called an interior point of F if Je > 0 such
that
Ne(p) € E.

We denote by int(E) for the set of interior points of E.

Example 3

Let X = R with d(z,y) = |z — y|, and E = [0,1). Then every p satisfying
0 < p < 1 is an interior point of E. Indeed, if we take e — min{p, 1 — p}, then
Nc(p) C E. However, 0 is not an interior point since Ve > 0, N (0) = (—¢,¢€)
contains points which are not in E. Thus, int(F) = (0,1).

Example 4

Let X = [0,00) with d(z,y) = |z —y| and E = [0,1). Then (0,1) C int(F) as
before. Moreover, 0 € int(FE) since N1(0) = [0,1) C E. Therefore, int(F) = E
in this case.

Example 5

Let X =R and E =R\ Q. Let p € E. Since Q is dense in R, for every ¢ > 0
we can find r € Q N N¢(p). Thus, no point of E is an interior point of E.
Therefore, int E = (.

15
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— Definition 2.4: Open and Closed Sets
e O C X is open if int(O) = O.

e ['C X is closed if X \ F' is open.

Note () and R are both open and closed.

Example 6

@ in R is neither open nor closed.

= Theorem 2.2

Let (X, d) be a metric space.

1. If {O4}aca is a collection of open sets of X, then U O, is open.
a€cA

2. It {Oy,---,0,} is a finite collection of open sets of X, then ﬂ 0; is
j=1
open. !

Remark.

The second statement is in general false for a countable collection of open sets.
For instance, consider

A1) -0 Ao+ 1) -0

n=1 n=1

Proof. (1) We may assume that |JO, # (). Let p € U O, then p € O, for some
a€cA
a € A. Since O, is open, Je > 0 such that N.(p) C O, C |JO,. Thus, p is an

interior point of U Oq.
acA

(2) Assume m 0; #0. Let p € m Oj. Then p € O; for Vj =1, 2, ..., n. Since

j=1 j=1

each Oj; is open, de; > 0 such that N, (p) € O;. Now, let € = min{ey, e, -+ , ¢} >
n

0, then Nc(p) € N, (p) € Oj for all j. Therefore, Nc(p) C ﬂ O;, and p is an
j=1

interior point. u

16
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Definition 2.5: Limit Point and Isolated Point

Let X be a metric space, and F C X. A point p € X is a limit point of
FE if every e-neighborhood of p contains a point ¢ € F with ¢ # p. A point
p € E that is not a limit point of F is called an isolated point of E.

This says that p € F is an isolated point < Je > 0 such that N.(p) N E = {p}.

Example 7
Let E = (a,b) C R. Then every point p € [a,b] is a limit point of E.

Example 8

Let E = {1 | n € N} CR. Show that each 1/n is an isolated point of E, and
0 is a limit point of E.

Solution If we take € > 0 such that

1 1
€< —— ——,
n n4+1

(@)= (2}

Now, for given ¢ > 0, In € N such that % < €. Then, % € N.(O)NE,so0is a
limit point of E. Note that 0 is the only limit point of E.

Then

Example 9

Let E = QNJ0,1] € R. Then, every p € [0,1] is a limit point of E. Let
e > 0. Suppose that p € [0,1). Since Q is dense in R, Ir € Q such that
p <r < min{p+¢,1}. Then, r € N.(p) N E. Suppose now that p = 1. Then
Ir € Q such that min{0,p — e} <r < p. Then r € N(p) N E.

= Theorem 2.3

Let X be a metric space, and F' C X. Then F is closed if and only if F
contains all its limit points.

Proof. (=) Since FC is open, for every p € FC, there is e > 0 such that N(p) C FC,
i.e. N.(p)NF = 0. Thus, no point of FC is a limit point of F.

(<) To show that FC s open, let p € FC. By the assumption, p is not a limit
point of F. Thus, Je > 0 such that N(p) N F = 0. This implies N.(p) C FC, and
hence FC is open. |

17
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Theorem 2.4

Let X be a metric space, and E C X. If p is a limit point of E, then every
Nc(p) contains infinitely many points of E.

Proof. Suppose not, the Je > 0 such that N.(p) N E contains only finitely many

points of E. Label these points as qi, ¢2, ..., ¢, with ¢; # p. Let ¢¢ =

min{d(p,¢;) | ¢ = 1,2,--- ,n} > 0. Then, N, (p) contains at most p. Thus p

is not a limit point of E. |
Corollary

A finite set in a metric space has no limit points.

= Definition 2.6: Closure

Let X be a metric space, and £ C X. Let E’ be the set of limit points of E.
Then, E = EU E' is the closure of E.

= Theorem 2.5

1. E is closed.
. FE

[\

= E if and only if E is closed.
F

3. ECF for every closed set F' C X such that £ C F.

Proof. (1) To prove EC is open, let p € EC, i.e. p ¢ E and p ¢ E'. Then, 3¢ > 0
such that N.(p) N E = (. It is enough to show that N.(p) N E' = 0. Suppose
q € N¢(p) N E’. We choose 6 > 0 such that Ns(¢) C Nc(p). Since g € E’, we have
Ns(q) N E # (). But this implies that N.(p) N E # @, which is a contradiction.

(2), (3): Exercise. [

= Definition 2.7: Dense

Let X be a metric space, and D C X. Then, D is dense in X if D = X.

Example 10
Q and R\ Q is dense in R.

18
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= Theorem 2.6

Let U C R be a open set. Then there exists at most countable collection
{I,} of pairwise disjoint open intervals such that U = J,, I

= Definition 2.8: Open and Closed in a set

Let X be a metric space and Y C X. Then, U CY isopen in Y if Vp € U,
Je > 0 such that N.(p) N Y C U. Also, C CY is closed in YV if Y\ C is
open.

Example 11

U =10,1) is not open in R, but open in ¥ = [0, c0).

2.3 Compact Sets

= Definition 2.9: Compact Set

Let X be a metric space, and E C X. A collection {O }aeca of open subsets
of X is an open cover of F if

EC an.

a€cA

A set K C X is compact if every open cover of K has a finite subcover of
K.

That is, if {O,} is an open cover of K, then Jay, ..., o, € A such that
K c | O,
j=1
Example 12

Every finite set is compact.

Example 13

I'=(0,1) is not compact. Consider O,, = (0, ;.%7) for n € N.. Then, {Oy, }nen
is an open cover of I. Indeed, if z € I, then 3ny € N such that n01+1 <l—zx
by the Archedian property. Thus,

oo
z €0, C | On
n=1

But, no finite subcover can cover I. Assume to the contrary that a finite

19
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subcover {Op,,On,,...,0n, } covers I. Let N = max{ny,---,ng}, then we
have
g N
onclo, =(0—),
o )_]szl : ( N+1>

which gives a contradiction.

Exercise 4

Prove that F' = [0, 00) is not compact.

= Theorem 2.7
Let X be a metric space. If K C X is compact, then
1. K is closed

2. If F C K and F is closed, then F' is compact.

Proof. (1) It is enough to show that KL is open. Let p € KC. For each q € K, Let
€g = d(p,q)/2. Then, N (p) NN, (¢q) = 0. Since { N, (q)}qek is an open cover of
K, there exists g1, qo, ..., ¢, such that

K g U Neqj (Qj)-
j=1

Let € = min{q1, - ,qn}. Then, N.(p) does not intersect with Neqj (g;) for all
j=1,...,n. Thus, N.(p) C KC which proves that K is closed.

(2) Let {Oq}aca be an open cover of F. Then,
{Oa}aca UF®

is an open cover of K. Since K is compact, 3 a finite subcollection of {O4 }aca UFC
containing K, which also contains of F'. |

Corollary

If F' is closed and K is compact, then F'N K is compact.

Theorem 2.8
|_If FE is an infinite subset of a compact set K, then E has a limit point in K.

Proof. Suppose not. Then Vq € K, J¢, > 0 such that N, (¢) contains at most
one point of . Since K is compact, we can find a subcollection of { N, (q)}qex
covering K, and hence F. This is a contradiction. |
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Theorem 2.9
Let {K,}52, be a sequence of nonempty compact subsets of X such that
(o)

K, O K, 41 for Vn € N. Then, K = ﬂ K, is nonempty and compact.

n=1

Proof. Since K is a closed subset of a compact set K, it is compact. |

2.4 Compact Subsets of R

Every closed and bounded interval [a, b] is compact.

|— Theorem 2.10: Heine-Borel

Proof. Let U = {U, }aca be an open cover of [a, b]. Define
E = {r € [a,b],[a,r] is covered by a finite subcover of U} .

Clearly, F is nonempty and bounded. Thus 3y = sup E' in R by the least upper
bound property.

I Claim. v =b.
Suppose that v < b. We will find a contradiction by constructing s € E such
that v < s. Since v € U, for some open set U, € U, Je > 0 such that N.(v) =

(v —€,v+¢€) C U,. Since 7 — € is not an upper bound of F, 3t € E such that
v — €<t <~. Thus, [0,t] is covered by finitely many sets

UanUaz"" aUan‘

Now, choose any s € (y,7 + €) such that s < b. Then,
[a, s] C U Ua; | UUa,
j=1

i.e. s€ E. Also v € E (why?), so this completes the proof. |

21



Real Analysis 1 Joshua Im (March 5 - June 18, 2024)

— Theorem 2.11: Heine-Borel-Bolzano-Weierstrass
Let K C R. Then, the following are equal.

1. K is closed and bounded.

2. K is compact.

3. Every infinite subset of K has a limit point in K.

Proof. (1) = (2): Since K is bounded, 3M > 0 such that K C [-M, M]. Then,
K is a closed subset of a compact set [—M, M]. Thus, K is compact.

(2) = (3): Exercise.

(3) = (1): Suppose K is not bounded, Then Vn € N, Jp,, € K such that |p,| > n.
We may assume that all p; are different. Then, {p,, | n € N} is an infinite subset
of R with no limit point in R. This is a contradiction, so K is bounded. To show
that K is closed, let p be a limit point of K. Then Vn € N, dp,, € K with p, # p
such that [p, —p| < 2. Let S = {p, | n € N}. Then, S is an infinite subset of K,
and p is a limit point of S. Now, it is enough to show that p is the only limit point
of S. (— p € K) Suppose g € R with ¢ # p. Then by the triangle inequality,

1
lg —pnl > 1qg—pl—[p—pnl > ilp—ql

Let € = %|p — g|. Then 3N € N such that % < € by the archimedian property.
Thus, Vn > N,

1 1
lg—pnl >lqg—pl—=>l¢g—p|—€e=5lp—ql|
n 2

Therefore, the distance between g and p,, has a positive lower bound, so ¢ is not
a limit point. [ ]

2.5 The Cantor Set

Let Py = [0,1]. If we remove the middle third open interval (%, %), we have
Py = J11UJ12, where Ji 1 = [0, %] and Jy o = [%, 1]. Now, from each of J;; and
J1 2, we remove (3%, 3%) and (312, 3%) so that we have P = Jo 1 U Ja o U Ja3U J2 4.
We continue this process inductively. Then,

.
Py=J Jn-
j=1

where .J,, ; is a closed interval of the form .J,, ; = [54, %#]. Note that Py O P1 D
P, O ---. The set
P=()Pa

n=0
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is called the Cantor set. The Cantor set satisfies some interesting properties:
1. P is nonempty and compact.
2. P contains all the endpoints of {J,, 1} for Vn € Nand 1 < k < 2™
3. Every point of P is a limit point of P.

Proof. Let p € P and ¢ > 0. Take m € N sufficiently large so that 37™ < e.
Since p € P, p € Jp i for some 1 < k < 2™, But the length of Jp, ; is 37™, so
JImk € Ne(p). Since both endpoints of .J,, ; are in P N N.(p), p is a limit point of
P. |

4. The sum of the lengths of the intervals removed is 1.
Proof. Let the sum of the lengths be S. Then,

1 1 1 2”1

n=1

5. P contains no intervals.

= Definition 2.10: Ternary Expansion

Let 0 <z <1, and n; = max{n € {0,1,2} | § < x}. Having chosed ny, ...,
ng, let

n
nk+1—max{n€{0,1,2}‘3k+1<x (3—1—?4— +3:>}

The expression x = 0.n1n9ong - - - is called the ternary expression of x.

According to the definition above, a finite expansion is not allowed. However,
for the next property, we use a different convention. Assume that x has a finite
expansion

k

37, am € {1,2}.

i
NE

1

ES
Il

If a,, = 2, we will use the finite expansion, and if a,, = 1, we will use the infinite
expansion as in the previous definition, i.e.

m—1 a 00 2
k
k=1 k=m+1

6. Let = € [0,1] which z = 0.nyngn3---. Then z € P if and only if ny, € {0,2}.

7. P is uncountable.
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Remark.

Note that there are countably many endpoints of J,, ;. Thus, P contains points
other than the endpoints of J,, ;.

Since P has length 0, it seems like P is a ’small’ set. However, the fact that P is
uncountable makes the Cantor set interesting.
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Sequences of Real Numbers

3

3.1 Convergent Sequences

— Definition 3.1: Convergence and Limit Point

A sequence {p,}32; in a metric space X is said to converge if Ve > 0,
Jp € X such that Ing € N such that d(p,,p) < € for Vn > ng. In this case,
we say that {p,} converges to p or that p is a limit point of {p, }, and write

lim p, =p or p, — p.

n— oo

Here, d(pn,p) < € is equivalent to p, € Nc(p) for ¥n > ng. We say that {p,}
diverges if it does not converge.

Example 1

2 11 2 1 2
Consider {3n + } . Show that lim,,_, nt = —.

n+1 3n+1 3

n=1

We need to find ng satisfying if n > ng, then

1

2n+1 2|
C3B3n+1)

3n+1 3

< €.

Solution Let € > 0. Choose ng € N such that ﬁ < €. Then, Vn > ny,

2n+1 2| 1
3n+1 3] 3(3n+1)
<7
In
1
< —
_9n0
<€

Therefore, the sequence converges to 2/3.

Example 2
The sequence {1 — (—1)"}>2; diverges in R.

Solution Suppose that p, = 1 — (—1)™ converges to p for some p € R. Then for
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e =1/2, Ing € N such that |p, — p| < % Vn > ng. However, for n > ng,

2= |pn _pn+1|

<I|pn—pl+|p— Pns1l

<1+
2 2

=1

)

which is a contradiction.

We also look when X is a metric space that is not the real line.

Example 3
Let X = C[0,1] be the set of bounded functions on [0, 1] with

d(f,g) = sup{|f(z) — g(=)| ; = €[0,1]}.

Consider the sequence {f,}52; where f,(z) = %n Then, f, — 0.

Solution Since
n

1
d(fn,()):sup{ 3:_0’ ; xE[O,l]}:
n n

d(fn,0) = 0 as n — oo.

= Definition 3.2: Bounded

A sequence {p,} C X is bounded if 3p € X and M > 0 such that d(p,,p) <
M ¥n € N.

™ Theorem 3.1
1. If {p,} converges in X, then the limit is unique.
2. Every convergent sequence in X is bounded.

3. If E C X and p is a limit point of E, then there exists a sequence {p, }
in E with p,, # p such that lim p, = p.
n—oo

Proof. (1) We prove by contradiction. Suppose Jg; and ¢o such that g; # ¢ and
qu = lim pp = qa.

n—oo

Let € = d(p1, p2)/2. Since p, — ¢; (j = 1,2), In; € N such that d(py,q;) < € Vn >
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nj. Now, let ng = max{ni,na}. Then, Vn > ny,

d(q1,q2) < d(q1,pn) + d(pn, q2)

< €e+e€
:d<QIaq2)7

which is a contradiction.

(2) Suppose p, — p in X. Then Ing € N such that d(p,,p) < 1 Vn > ng. Since

d(pn,p) S max{d(plvp)a e 7d(pno7p)7 1}

for all n € N, {p,} is bounded.

(3) For each n € N, Jp,, € F with p,, # p such that d(p,,p) < % This sequence
{pn} converges to p. [ |

Remark.

The converse of the (2) is not true in general. That is, a bounded sequence
need not be convergent. For instance, the sequence p,, = 1—(—1)", is bounded
but not convergent.

Remark.

In (3) of the theorem above, for example, v/2 is a limit point of Q, so 3{r,} C Q
such that r,, — v/2. Such sequence may not be unique.

3.2 Sequences of Real Numbers

In sections 3.2 and 3.3, let X = R with the standard distance function.

= Theorem 3.2

Suppose lim a, = a and lim b, = b. Then,
n—oo n—oo

1. lim (ap, +b,) =a+b
n—oo

2. lim (anb,) = ab

n—oo

bn
3. Ifa#0and a, #0 for alln e N, lim — =

n—00 Qy, a

Proof. (1) Let € > 0 be given. Then, there exists ny, ny € N such that
€ .
|an—a|<§1fn2n1

|bn—b|<%ifn2n2.
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Take ng = max{ny,ns}. Then, for n > ng,
[(an +bn) — (a+0)| < |an —a| + b, — b < e
(2) Let € > 0 be given. Note that
lanb, — ab| = |anb, — anb + a,b — ab|
= lan| - [bn — b] + |an —a] - [b].
Since a,, — a, In1 € N such that

|ozn—a|<2 if n >mny.

_c

(Il +1)
Also, since {a,} is bounded, 3M > 0 such that |a,| < M for all n € N. Similarly,
since b, — b, Iny € N such that b, — b < 55 for all n > ny. Take ny =
max{ni, na}, then

€ €
bn—abl < M-+ 5 b
la abl < M- o+ smren
_e €
272

=¢c
whenever n > ng. Therefore, lim (a,b,) = ab.
n—oo

1 1
(3) It is enough to show that lim — = —. Let € > 0 be given. Note that
a

n—00 (A,

1 1

an G

= la = an| and |a,| > |a| — |a — ay).
lal - x|

Since a # 0 and a,, — a, Ing € N such that |a, — a| < |a|/2 for all n > ng. Then,
we get |ay| > |a| — |a|/2 = |a|/2, and hence

2
Since a,, — a, In1 > ng such that |a, —a| < e- 1al” for all n > nq. Therefore
) 2 )

1

an G

<eifn>ny. |

Corollary

Suppose lim a, = a. For all c € R, lim (a,+¢) = a+e¢, and lim ca, = ca.
n—00 n— 00 n—00
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Theorem 3.3

Assume that lin}) a, = 0 and that {b,} is bounded. Then lin}) anby, = 0.
n— n—

Proof. Since {b,} is bounded, IM > 0 such that |b,| < M for all n € N. Since
an — 0, Ing € N such that |a,| < ¢/M for all n > ng. Then,

|anbn—0|<ﬁ~M:eifn2n0. n

Theorem 3.4: Squeeze Theorem

Suppose a, < b, < ¢, for all n > ng and lim a, = lim ¢, = L. Then,
n— oo n— oo

lim b, = L.

n— oo

Proof. Let € > 0 be given. Then, 3n; € N such that |a, — L| < € for all n > ny,
and Ing € N such that |¢, — L| < € for all n > ny. Let ng = max{ny,ns}. Then,

—e<a,—L<b,—L<c¢c,—L<eifn>ny,

so |b,, —b| <€, and lim b, = L. [
n— oo

= Theorem 3.5

1
1. If p > 0, then lim — =0.

n—oo NP

2. If p> 0, then lim /p=1.
n—oo

3. lim ¢n=1.

n—roo

[e%

4 Tfp>1and a €R, then lim — =0

n—oo pt
5. If |p| < 1, then lim p" =0
n—oo
7

6. If p € R, then lim = =o.

n—oo M.

The last statement says that exponential functions always grow faster than poly-
nomials.

Proof. (1) Let € > 0 be given. Then 3ny € N such that

1
— < 61/13.
no
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Thus, for all n > ng,

(2) Exercise.
(3) Let &, = ¢/n— 1. Then, {/n =1+ z, and

k=0

[ 2

if n > 2. Thus, 0 < x,, < 1 for all n > 2. By the squeeze theorem, x,, — 0
n—

as n — 0o.

(4) Since p > 1, we write p = 1 + ¢ for some g > 0. Then

n __ n __ = n k
p"=(1+4q) —Z(k)q :
k=0
Choose kg € N such that kg > «. Then,

n n\ g nn—=1)---(n—ko+1) ;.
p >(k0>q = o! q.

If n > 2kg, thenn — kg +1 > %n—i—l > %n, and hence

nn—1)---(n—ky+1 1 /ny\ko
( ) ( 0 )qk0>7<§) ko

ko! ko!
Therefore,
o gkof,! 1
ogn—g k0~k7forn>2k‘o,
prT gh mkoe
which gives lim (- 0 by the squeeze theorem.
n—oo pnt
(5), (6) Exercise. [ |
Example 4

2n+1
3n+2

We revisit the example { } We have

n—00 N,

2n+1 . 24
im = lim

1
3

33 =

2
3+ lim —

n—oo N
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3.3 Monotone Sequences

= Definition 3.3: Monotonically Increasing/Decreasing

A sequence {a,} in R is monotonically increasing if a,, > a,; for all
n € N, and monotonically decreasing if a,, < a,41 for alln € N. A
sequence is monotone if it is either monotonically increasing or decreasing.

= Definition 3.4: Strictly Increasing/Decreasing

A sequence {a,} in R is strictly increasing if a,, > a, 11 for all n € N, and
strictly decreasing if a,, < a,,41 for all n € N.

= Theorem 3.6: Monotone Convergence Theorem

If {a,} is monotone and bounded, then {a,} converges.

Proof. Without loss of generality, assume {a,} is monotoically increasing. Set
E ={a, | n € N}. Then, £ # () and is bounded above. Let a = sup E.

Claim. lim qa, = a.
n—oo

Let € > 0 be given. Since a — € is not an upper bound of F, Iny € N such that
a— €< anp, < a. Since {a,} is monotonically increasing,

a—€<a, <aifn>ng.
Therefore, |a, — a| < €, and {a,} converges. [ |

Remark.
. . sin nx
The converse of the theorem is not true. One example is {a,} = .
n

Corollary : Nested Interval Property
If {I,}5, is a sequence of closed and bounded intervals with I,, D I, for

all n € N, then ﬂ I, # 0.

n=1
Proof. Suppose I, = [an, b, where a,,, b, € R. Since I, D I,,41,
Ap, S An+1 S bn+1 S bn

Since {a,} is monotonically increasing, it converges, say to a. Then since a < b,

foralln €N, a € [ In. [

n=1
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Euler's Number

Consider a sequence {t,,}°2 ; where

1 n
= (147) -
n

Then the sequence {t,} is monotone and bounded.

First, we prove that {¢,} is monotone. By the binomial theorem,

1\" n\ 1 n\ 1
t, =14+ — =1+ — 4+ —,
n 1/n n/nm
and

1 n+1
thar = (1
+ ( +n—|—1>

14 n+1 1 T n+1 1 n n+1 1

B 1 Jn+1 n J(n+1)" n+1)(n+1)nt+1’
Since the kth term of ¢,,41 is greater than the kth term of ¢,, and ¢,+; has an
extra positive term, t,4+1 > t5.

For boundedness, in the binomial expansion of ¢,

<1+1 ! ! !
t, <1+ +5+§+"'+a
1 1 1
§1+1+§+ﬁ+“.+ﬁ

<3.

Therefore, {t,} converges. The limit of {¢,,} is called the euler’s number e, and it
has a value of approximately 2.718.

Infinite Limits

™ Definition 3.5: Infinite Limits
Let {a,} be a sequence of real numbers. If VM € R, 3ng € N such that
an > M if n > ng,

then we say that {a,} diverges to oo, and denote a,, — co.
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Theorem 3.7

If {a,} is monotonically increasing and not bounded above, then a,, — oo as
n — oo.

3.4 Subsequences and Bolzano-Weierstrass

= Definition 3.6: Subsequence

Let (X, d) be a metric space. Given a sequence {p, } in X, consider a strictly
increasing sequence {n; }7° | of positive integers. Then the sequence {p,, }72,
is called a subsequence of the sequence {p,}.

= Definition 3.7: Subsequential Limit

If the subsequence {py,,} converges, its limit is called the subsequential
limit of the sequence {p,}. That is, a point p € X is called a subsequential
limit of the sequence {p,} if there exists a subsequence that converges to p.

Note that p also can be positive or negative infinity.

Remark.

Subsequential limits may not be unique.

= Theorem 3.8

Let (X, d) be a metric space and let {p,} be a sequence in X converging to
p. Then, every subsequence of {p,} also converges to p.

Proof. Let {p,,} be any subsequence of {p,}, and let ¢ > 0 be given. Since
Pn — P, there exists a positive integer ng such that d(p,,p) < € if n > ng. Since
{ni} is strictly increasing, ny > ng for all k¥ > ng. Therefore, d(py, ,p) < € for all
k Z no. |

Theorem 3.9

Let K be a compact subset of a metric space (X, d). Then every sequence in
K has a convergent subsequence which converges in K.

Proof. Let {p,} be a sequence in K, and let £ = {p, |n=1,2,---}. If F is finite,
then there exists a point p € E and a sequence {ng} with ny < ng < --- such that

pnlzpnzz...:p'

The sequence {py, } obviously converges to p € K.
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If E is infinite, then E has a limit point p € K. Choose ny such that d(p, p,,) < 1.
Having chosen nq, ..., nx_1, choose an integer ny > nx_1 so that

1
d(p,pn,) < 1
Such an integer nj exists since every neighborhood of p contains infinitely many
points of E. The sequence {py,, } is a subsequence of {p,, } convergingtop € K. W

Remark.

The converse of the theorem is also true. That is, if K is a subset of a metric
space (X,,d) such that every sequence in K has a convergent subsequence,
then K is compact.

Corollary : Bolzano-Weierstrass
Every bounded sequence in R has a convergent sequence.
Proof. Suppose {p,} is a bounded sequence in R. Then there exists a positive

integer M such that {p,} is a sequence in the compact set [—M, M]. The result
follows from the theorem. [ |

Theorem 3.10

Let {p,} be a sequence in a metric space (X,d). If p is a limit point of
{pn | n € N}, then there exists a subsequence {p,,} of {p,} such that
Dn, — D as k — oo.

3.5 Limit Superior and Inferior of a Sequence
Let {s,} be a sequence in R. For each k € N, define a;, and by by
ap = inf{s, : n >k}

by, = sup{s, : n >k}

= Definition 3.8: Limit Superior and Limit Inferior

Let {s,} be a sequence in R. The limit superior of {s,}, denoted lim s,
n— oo

or lims,, is defined as

lim s, = lim b, = inf sup{s,, | n > k}.
noo k—o00 k keN p{n| - }
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= Theorem 3.11

Let {s,} be a real sequence. Suppose lims,, € R. Then 3 = lims,, if and
only if Ve > 0,

1. Ing € N such that s,, < 8+ € for all n > nyg

2. Vn € N, 3K > n such that s, > 8 —e.

Corollary
lims,, = lims,, if and only if lim s,, exists in [—o0, 0o].
Proof. («<): Trivial
(=): Suppose a = lims,, = lims,, € R. Let ¢ > 0. Then 3n;, ny € N such that
Sy, < a+eforalln>ny and s, > a — € for all n > ns.
Thus, for any n > ng = max{n,na}, s, — a| <¢, ie. lims, = a. [

Exercise 5

Complete the proof for the corollary above for a = +00.

= Theorem 3.12

Let {a,} and {b,} be bounded real sequence. Then the following inequality
holds.

lima,, + limb,, < lim(a, + by,)
< lima,, + limb,,

< lim(a, + by,)

< lima,, + limb,,.

Proof. Exercises. |

= Theorem 3.13

Let {s,} be a real sequence. Let E be the set of all subsequential limits of
{sn} in [~00, 00]. Then lims,, lims,, € E and

1. lims, =sup E

2. lims,, = inf F.
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Proof. We first prove that s = lims, € E. Assume s € R. It is enough to
show that 3{s,,} such that s,, — s. Let n; be the smallest integer such that
s§—1 < sp, < s+ 1. Having chosen ny < --- < ng_1, let ny be the smallest integer
greater than nj;_; such that

1< < +1
s—— < Sy, s+ —.
k F k

Such subsequence {s,, } clearly converges to s.
We now prove (1). Since s € E, s < sup E. Assume that s < sup F.

Case 1: 8 = supFE # oo. In this case, dJa € FE such that s < a < . Take
e > 0 sufficiently small so that s < a — 2¢. Since s = lims,,, Ing € N such that
Sn < §+ € < a— e for Vn > ng. But this means that there can exist only finitely
many k such that |s; — a| < e. Thus, no subsequence of {s,} can converge to «,
which is a contradiction.

Case 2: 8 = co: exercise. [ |

Exercise 6

Complete the proof above where s = +o0.

Example 5
0 n =2k
(-D)F n=2k+1

If s,, = sin n77r’ then s,, = {

3.6 Cauchy Sequences

™ Definition 3.9: Cauchy Sequence

Let X be a metric space. A sequence {p,} is called a Cauchy sequence if
Ve > 0, Ing € N such that d(p,,pm) < € for all n, m > ng.

= Theorem 3.14
1. Every convergent sequence in X is Cauchy.

2. Every Cauchy sequence is bounded.

Proof. (1) Assume p,, — p. Let € > 0. Then Iny € N such that d(p,,p) < €/2 for
all n > ng. Thus, Vn, m > ng,

d(Pn,Pm) < d(pn,p) + d(p, pm) < e

(2) Assume {p,} is Cauchy. Then, Ing € N such that d(pm,pn) < 1. For any
n € N, we have that d(pn, pn,) < max{1,d(p1,Pny), s A(Pn—1,Pne)}- [
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Remark.

The converses of (1) and (2) are not true in general.

Example 6

Let X = (0,1) be with d(z,y) = |z — y|. Consider {%}20:17 then it is Cauchy.
1

Indeed, Ve > 0, Ing € N such that - < % This,
0

1 1 1 1 .
—— —| <-4+ —<e€ifn,m>ng
m

n m n

1
However, — - 0 in R and 0 ¢ X.
n

Example 7

Let X = Q be with d(p,q) = |[p—q|- If p, € X and p,, — p for some p € R\ R.
Then p,, is Cauchy, but p,, doesn’t converge in X.

Lemma

Let X be a metric space. If {p,} is Cauchy in X that has a convergent
subsequence, then {p,} converges.

Proof. Suppose that p,, — p, in X. Let € > 0. Then 3k; € N such that
Apryp) < 5 ik > k.
Since {p,} is Cauchy, In; € N such that
d(pn, pm) < % if n,m > ny.

Let ng = max{ki,ni}. If we take kK > ng, then ny > ng. Thus, Yn > ny,
d(pn,p) < d(PnsPny,) + d(pn,,, p) <€ ie. p, —p. u

Theorem 3.15
|_Every Cauchy sequence in R converges.

Proof. Let {p,} be Cauchy in R. Then it is bounded. By Bolwano-Weierstrass, it
has a convergent subsequence. The result follows from the lemma. |
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Definition 3.10: Complete Metric Space

A metric space (X, d) is complete if every Cauchy sequence in X converges
to X.

Contractive Sequences

— Definition 3.11: Contractive Sequence

A sequence {p,} in a metric space (X, d) is contractive if there exists a real
number 0 < b < 1 such that

d(pn+1 ) pn) < bd(pnapn—l)

foralln e N, n > 2.

If {p,} is a contractive sequence, then

d(prt1,pn) < V" d(p2,p1),

and
n—1

d(pn-i—mvpn) S bn_ld(p27p1)(1 + b+ R bM—l) < 1-b

d(p2,p1)-

Corollary

Every contractive sequence is a Cauchy sequence.

= Theorem 3.16

Let (X,d) be a complete metric space. Then every contractive sequence in
X converges in X. Furthermore, if the sequence {p,} is contractive and
p= lim p,, then

n—oo

n—1

L. d(p,pn) <

=7z bd(p2,p1)7 and

b
2. d(pvpn) < md(pn,pn—l)~

Proof. Exercise. u
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3.7 Series of Real Numbers

= Definition 3.12: Series

Let {a,}52,; be a sequence real numbers. Define {s,}52; by
n
sn:a1+a2+~~~+an:2ak.
k=1

The sequence {s,} is called a series.

oo
For each n € N, s,, is called the nth partial sum of the series. The series Z a

k=1
converges/diverges if and only if the sequence {s,} converges/diverges.

= Theorem 3.17: Cauchy Criterion

The series Z ay, converges if and only if for all € > 0, dng € N such that
k=1

<€

m
>
k=n-+1

for all m > n > nyg.

m

>

k=n+1

Proof. Since = |$m — Snl, {sn} is Cauchy. |

Corollary

o0
If Zak converges, then kli_}m ar = 0.
o0
k=1

Proof. Since ay, = s — sk—_1, the result follows from the Cauchy criterion. |

Remark.

The converse of the corollary above is not true in general.
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Theorem 3.18

Suppose ar, > 0 for all k € N. Then Zak converges if and only if {s,} is

k=1
bounded above.

Proof. Since ay, > 0 for all k, the sequence {s,,} is monotonically increasing. There-

o0

fore, Zak = s, converges if and only if {s,} is bounded above by monotone
k=1

convergence theorem. |
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Limits and Continuity

4

4.1 Limit of a Function

= Definition 4.1: Limit

Let X be a metric space, and £ C X, and let f: F — R. Suppose that p is
a limit point of E. The function f has a limit at p if 3L € R such that

Ve >0, 30 = d(e,p, f) > 0 such that |f(x) — L| <€

for all points © € F satisfying 0 < d(z,p) < 6. In this case, we write
lim f(z)=Lor f(z) > Lasz — p.
Tr—r 00

Remark. e If p is not a limit point, there are no points satisfying 0 <
d(x,p) < 6 when § > 0 is sufficiently small.

e f is not necessarily defined at p.

Example 1
22
Consider f(z) =
x

-2

on E =R\ {2}. Find ;;rrlzf(x)

Solution We claim that lim2 f(z) = 4. Let € > 0 and take § = e¢. Then for all
z—
x € Ewith0 < |z —2| <9,

2_4
)~ = |22 =il =l -2l < o=
2 _
Therefore, lim v 4 =4.
=2 r — 2

Example 2

vV 1-1
Let f(z) = Y"1~ be defined on E = [~1,0) U (0, 00). Find lim f(2).

€T z—

1
Solution We claim that lin}) flz) = 3 Let € > 0 and take § = 2e. For x € E with
x—
0<lz| <9,

1 1 1
'f@z' - ‘m 2\

B ‘ 1-Vz+1 ‘

2(Vr +1+1)
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—X
B ’2(\/x+1+1)2
el
=2
_9
2

1
Thus,fﬁiasxﬁo.

Example 3
1 z€Q . . .
Let f(z) = . Show that lim f(x) does not exist for every point
0 zeR\Q z—p
peR.

Solution We need to show that for every L € R, Je > 0 such that V§ > 0, 3z € R
with 0 < |z — p| < ¢ for which |f(z) — L] > e. We fix p, L € R. Take ¢ =
max{|L — 1|, |L|}, and let § > 0.

If e = |L—1|, take € Q such that 0 < |z —p| <. Then, |f(z)—1|=|1-L| =«
If e = |L|, take x € R\ Q such that 0 < |z — p| < §. Then, |f(z) — L| =|L| =e.

Therefore, lim f(z) does not exist.
T—p

Exercise 7
0 €
Let f(z) = veQ . Then, lim f(z) = 0 since |f(x)| < |z|. However,
z zeR\Q z—0
lim f(x) does not exist for any p # 0. Show that liin f(x) does not exist.
T—p T—p
Example 4
1 1
Let f(z) = — be defined on E = (0,1). Show that lim f(z) = — for any
x T—p D
pe(0,1).

2
Solution Let € > 0 and take § = min {g, q;} Then for any point = € F with
0<|z—p| <,

rp €rp

1 1‘ le—p| & _ 2§
—_—— =< — < =< €
r p

1
Thus, f(z) - - as ¢ — p.
p
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Example 5
Let f(z,y) = ﬂxi_i/yz be defined on E = R?\ {(0,0)}. Show that
2
lim T,Yy) = —.
(w,y)—>(1,2)f( v) 5
Solution Note that
2 Szy — 2(z2 + y?)
‘f(xay)_f)’ = 5(x2+y2)
@29y~ 20)
5(x? +y?)
|z — 2y|
— <y —2+2(1 -
_5(x2+y2)|y +2(1 - 2)|
|z] + 2]yl

2l -1 —2]).
< Sarr e Clr =11y —2)

1
Let € > 0, and let § = (0, 2) be a constant to be determined. If (z,y) € E

1 3 3 5
satisfies 0 < d ((z, ), (1,2)) < 4, then 3 < x| < 5 and 3 < ly| < 7 Thus,

wolot

=] + 2y|

39
20 +0) = —4.
5(z2 + y2) (20 +9) 25

$42
2l -1+ |y —-2|) £ =7~
@l =11+ ly=20) < 27

PN +

=
~—

1 25
By taking § = min< =, —¢ », we obtain that
2739
|| +2y|

— 2]z -1 -2 .
S =1+l —20) <

Theorem 4.1

Let X be a metric space, E C X, p a limit point of F, and f : E — R. Then
lim f(z) = L if and only if lim f(p,) = L for every sequence {p,} in F
T—p n—o00

with p, # p such that lim p, = p.
n—roo

Proof. (=) Let {p,} be any sequence in E such that p, # p and le Dn = P.
Let ¢ > 0. Since liin f(z) = L, 36 > 0 such that |f(z) — L] < e for all z € E
T—p

with 0 < |2 — p| < é. Since lim p,, = p, Ing € N such that 0 < |p, — p| < § for
n—oo
Vn > ng. This, |f(pn) — L| < € for all n > nyg.

(<) Assume to the contrary that lim f(x) # L. Then Je > 0 such that V§ > 0,
T—p
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Jz € E with 0 < |[z—p| < d and |f(z) — L| > e. In particular, for 6 = 1/n (n € N),
Jdp, € E such that 0 < |p, —p| < 1/n and |f(p,) — L| > e. This means that
lim f(pn) # L, which is a contradiction. [

n—oo

Corollary

If f has a limit at p, then it is unique.

We now look for the application of the theorem.

Example 6
1 2
Let f(x) = sin; be defined on E = (0,00). Let p, = Gntr Then
f(pn) = (—=1)™, which is oscillating. Since lim f(p,) does not exist, lim —
n—00 r—0 x

does not exist.

= Theorem 4.2

Suppose E is a subset of a metric space X, f, g : R — R, and p is a limit

point of E. If
lim f(z) = A and liLn g(x) = B,
a—p

T—p

then

L. lim (f(z) +g(x)) = A+ B

T—p

2. lim f(z)g(x) = AB

T—p

o fl@) A
3. ilg;mfglfB#O.

Proof. (1), (2) Applying theorem 4.1 reduces the proof of sequences, which were
already done at chapter 3.

(3) By (2) it suffices to show that

lim — = l
v=p g(x) B’

I Claim. g(x) # 0 for all z sufficiently close to p, x # p.

Take € = |B|/2. Then there exists §; > 0 such that |g(x) — B| < |B|/2 for all
x € E<0< |z —p| <d. We now have |g(xz) — B| > ||g(z)| — |B||, so

Bl _ B
B- =00
l9(a)] > 1B] - 5 = 1 >
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forallz € E,0 < |z —p| < 1.

Apply theorem 4.1 and the limit of the reciprocal for sequences. Let {p,} be any
sequence in E with p, — p and p, # p for all n. Then there is an ng € N such
that for all n > ng, 0 < |p, — p| < ;. Thus g(p,) # 0 for all n > ng. Therefore

1 1

lim = —,
n—o0 g(pn) B

and this holds for every sequence {p, } such that p, — p, so

= Definition 4.2: Bounded Function

A real-valued function f defined on a set F is bounded on F is there exists
a constant M such that |f(z)] < M for all x € E.

Proof. Exercise. |

Theorem 4.3
If g is bounded on E and lim f(z) = 0, then

T—p

lim f(z)g(x) = 0.

T—p

Proof. Exercise. |

= Theorem 4.4: Squeeze Theorem

Suppose f, g, and h are functions from E to R satisfying
g(x) < f(z) < h(zx) for all z € E.

If lim g(x) = lim h(z) = L, then lim f(x) = L.

= Definition 4.3: Limits at Infinity

The function f : £ — R has a limit at infinity if there exists a number
L € R such that given € > 0, 3M such that

|f(z) — L] <eforall x € EN(M,o0).
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4.2 Continuous Functions

= Definition 4.4: Continuous

Let X be a metric space, and E C X. A function f: F — R is continuous
at a point p € E if Ve > 0, 30 > 0 such that |f(z) — f(p)| < eforallz € E
with d(x,p) < 4.

= Theorem 4.5

If f,g: EC X — R are continuous at p € E, then f £+ ¢ and fg are also
continuous at p. If g(x) # 0 for all z € E, f/g is also continuous at p.

Proof. If p is an isolated point of FE, then the result is true since every function
on E is continuous at p. If p is a limit point of E, then the conclusions follow from
theorem 4.2. |

Theorem 4.6

Let A, BCRandlet f: A— R, g: B— R be functions such that the range
of fisin B. If f is continuous at p € A and g is continuous at f(p), then
h = go f is continuous at p.

Proof. Fix € > 0. Since g is continuous at f(p), 361 > 0 such that
l9) — g(f @)l < ¢ forall ye BNy, (7).
Since f is continuous at p, 30 > 0 such that
|f(x) = f(p)] < &1 forall xze AN N;(p).
Thus if x € A with |z — p| < 4,
|h(z) = h(p)| = |g(f(x)) — g(f(p))] <€,
so h is continuous at p. |

Example 7
If p is a polynomial function of degree n, defined by

p(2) = apr"™ + ap_12" 4+ a1z + ao,

where n is a nonnegative integer and ag, a1, ..., a, € R with a, # 0, then
p(z) is continuous on R.

46



Real Analysis 1 Joshua Im (March 5 - June 18, 2024)

Example 8
Suppose p and ¢ are two polynomials on R and F = {x € R : ¢(z) = 0}. Then
the rational function r defined on R\ E by

r(z) = ==, r€R\E,

is continuous on R\ E.

= Theorem 4.7: Intermediate Value Theorem

Let f : [a,b] — R be a continuous function. If f(a) < v < f(b) for some
v € R, then Jc € (a,b) such that f(c) = 1.

Proof. Let A = {z € [a,b] : f(x) <~}. We have A # ) since a € A, and A is
bounded above by b. Thus A has a supremum in R, denote it by ¢. Then ¢ < b.

I Claim. f(c) =7.

Suppose f(c) < 7. Let e = (v — f(¢))/2 > 0. Since f is continuous at ¢, 3§ > 0
such that

fle)—e< f(x) < f(e)+€ forall xe Ns(c)nla,b].
Since f(c) < 7, ¢ # b, and thus (¢,b] N Ns(c) # 0. But for any = € (c,b] with
c<zr<cH+,

1 1

f(2) < (0 + e = F(O)+ 57— 510 = 5(F(@) +7) <.

But then « € A and x > ¢, contradicting ¢ = sup A. Therefore f(c) > .

Since ¢ = sup A, either ¢ € A or ¢ is a limit point of A. If ¢ € A, then f(c) <~. If
¢ is a limit point of A, then there exists a sequence {x,} in A such that z,, — c.
Since z,, € A, f(x,) <. Since f is continuous,

fle) = lim f(zn) <7

n—oo

Therefore f(c) = . [

Corollary

fI C Ris an interval and f : I — R is continuous on I, then f(I) is an
interval.

Proof. Let s, t € f(I) with s < t, and let a, b € I with a # b be such that f(a) = s
and f(b) =t. Suppose v satisfies s < v < t. If a < b, then since f is continuous on
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[a, ], by the intermediate value theorem there exists ¢ € (a,b) such that f(c) = 1.
Thus v € f(I). A similar argument also holds if a > b. |

4.3 Uniform Continuity

= Definition 4.5: Uniformly Continuous

Let E C X and f: E — R. The function f is uniformly continuous on F
if Ve > 0, 35 > 0 such that |f(z) — f(y)| < e for all z, y € FE with d(x,y) <.

Example 9

If f(z) = sinz, then since |f(z) — f(y)| < |z — y| for Va, y € R, sinx is
uniformly continuous on R.

Example 10

1
Show that f(z) = — is not uniformly continuous on (0, 1).
x

Solution Suppose that it is uniformly continuous. Then for e = 1, 36 € (0, 1) such
that

1 1
:’<1V;v,y€(0,1) wuth |z —y| < d.
Ty

1 1 1
Choose z € (0, 2) and y =z + 5(5 € (0,1). Since |z —y| = 55 < §, we have

1>

11 -
_’ZI:E yl _ 9/2
x oy Ty x

1 1
and hence 55 > x. Since x € <0, 2> was arbitrary, we arrive at a contradiction.

Example 11

1
Show that f(z) = — is uniformly continuous on [0, c0) for all a > 0.
x

= Definition 4.6: Lipschitz Functions

A function f: E C X — R is Lipschitz is 3M > 0 such that |f(z) — f(y)| <
Md(z,y).

= Theorem 4.8

Any Lipschitz function is uniformly continuous.

Proof. Exercise. |

48



Real Analysis 1 Joshua Im (March 5 - June 18, 2024)

Exercise 8

Show that f(z) = v/ on (0,00) is uniformly continuous but not Lipschitz
continuous.

= Theorem 4.9: Uniform Continuity Theorem

If K C X is compact and f : K — R is continuous on K, then f is uniformly
continuous on K.

Proof. Let € > 0. Since f is continuous at each point of p € K, 36, > 0 such that
|f(z) — f(p)| < €/2 for all z € K N Ns,(p). Then {Ns, /2(p)}per forms an open
cover of K. Since K is compact, dp1, ..., pg such that

K C|JNs, 12(0).

Jj=1

Let 6 = min{d,,/2 : j = 1,---,n} > 0. If 2, y € K and d(z,y) < J, then
T € N(;pj/z(pj) for some j. Moreover,

d(pj7y) S d(pyx) + d((E,y) S 6171'/2 + d< 6;0]"
Thus, z, y € ngj (p;). By the triangle inequality,

If(x) = )l < |f(x) = flpp)| +1f(pj) — fFy)| <e L

Corollary

A continuous function on [a, b] is uniformly continuous.

This is true by Heine-Borel. Here, both boundedness and closedness of [a, b] are
required.

Exercise 9

Show that f(x) = 22 on [0, 00) is not uniformly continuous.
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4.4 Monotone Functions and Discontinuities

= Definition 4.7: Left and Right Limits

Let E C R and let p be a limit point of E N (p,00). A function f: E — R
has a right limit at p if 3L € R with Ve > 0, 3§ > 0 such that |f(z) —L| <€
forallz € EN(p,p+9). In this case, we write

Flp+) = Tim_ f(z) = Jim £(2).
p T>p

Left limits are defined similarly.

Let p be a limit point of E. Then f has a limit at p if and only if
e f(p+) and f(p—) both exist
o flpt+)=flp—).

Definition 4.8: Right and Left Continuities

Let £ C R. A function f: E — R is right continuous at p € F if Ve > 0,
36 > 0 such that |f(z) — f(p)] < efor all z € EN[p,p+9).

Left continuity is defined similarly.

A function f : (a,b) — R is right continuous at p € (a,b) if and only if f(p+)
exists and equals to f(p).

Note A function f : (a,b) is continuous at p € (a,b) if and only if
e f(p+) and f(p—) both exist
o flpt) =flp—) = fp)

So for a function not to be continuous, either f(p+), f(p—), or f(p) does not exist,
or if they all exist but not equal. There is a name for these discontinuities.

Definition 4.9: Jump Discontinuity

A function f: I — R has a jump discontinuity at p € int([) if f(p+) and
f(p—) both exist, but f is not continuous at p.

Jump discontinuities are also referred to as discontinuities of the first kind.
All other discontinuities are said to be of second kind.

If f(p+) # f(p—), [ has a jump discontinuity at p. If f(p+) = f(p—) # f(p), the
discontinuity is removable. All discontinuities for which f(p+) or f(p—) does not
exist are discontinuities of the second kind.
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= Definition 4.10: Monotonically Increasing/Decreasing

Example 12
2 —4 L9

Let g(x) = ¢ z =2 . . Then this function has a removable discontinuity
2 T=2

at © = 2. Here, we can redefine g(2) = 4 so that g is continuous at = 2.

Example 13

1
Let h(z) = xsin — on (0,00). Then this function has a removable discontinuity
x

at © = 0. Here, we can define h(0) = 0 so that h is continuous at 0.

Example 14

Let f(z) = [x], the greatest integer function. Then f has a jump discontinuity
at each n € Z and is continuous on R\ Z.

Example 15
0 <0

Consider f(z) =< 1 . Since f(0+) does not exist, f has the dis-
sin— x>0

x
continuity of the second kind.

Example 16

Define f : R — R by f(z) = sin(2rz[z]). If € R\ Z, then z € (n,n+ 1)
for some n € Z and [z] = n. Thus, f(x) = sin(27nz) is continuous on z. If
r =n € Z, then

lim sin(27xz[z]) = sin(27n?) =0
z—nt

wl_l)ril_ sin(2rz[z]) = sin(2rn(n — 1)) =0

f(n) = sin(27n?) =0.

Thus, f is continuous on R.

Exercise 10

In the previous example, check that f is not uniformly continuous on R.

A function f is monotonically increasing/decreasing if f(z) < f(y) or
flx) > fly) Vo, y € I with z < y.

We call f monotone if it is monotonically increasing or decreasing on I.
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= Definition 4.11: Strictly Increasing/Decreasing

A function f is strictly increasing/decreasing if f(z) < f(y) or f(z) >
f(y) Vo, y € I with x < y.

We call f strictly monotone if it is strictly increasing or decreasing on I.

= Theorem 4.10

Let I C R be an open interval and f : I — R be a monotone increasing on
I. Then f(p+) and (p—) exist for all p € T and

sup f(a) = f(p—) < f(p) < f(p+) = Inf f(2).

r<p

Furthermore, if p < g with p, ¢ € I, then f(p+) < f(q—).

Proof. Fix p € I. Since f is increasing, the set {f(z) : © < p,x € I} is bounded
above by f(p). Thus, A=3", _ f(z) exists in R and A < f(p).

| Claim. A= f(p—).

Let € > 0. Since A = sup,,(7), Jzg < p such that A —e < f(z9) < A. Since f is
increasing, A—e < f(z9) < f(z) < Afor all x € (xg,p), i.e. f(p—) = A. Similarly,

fp) < flo+) < [, fla).
Finally, let p < q. then
flo+) =inf{f(z):p<z,xel}
<inf{f(z):p <z <q}
<sup{f(z):p <z <q}
<sup{f(z):z <quzel}
= flg—)- u

Corollary

If f is monotone on an open interval I, then the set of all discontinuities of
f is at most countable.

Proof. Let E = {p € I : f is discontinuous at p}. We may assume that f is
monotone increasing on I. Then p € E if and only if f(p—) < f(p+). For each
p € E, 3r, € Q such that f(p—) <1, < r(p+). We define g : E — Q by g(p) = rp.
If p < qwith p, ¢ € E, then r, < f(p+) < f(¢g—) < ry, and thus g is injective.
Therefore, E is equivalent to a subset of Q and hence it is at most countable. W
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Then, is there a monotone function with at most countable discontinuities? The
answer is yes.

= Definition 4.12: Unit Jump Function

0 0
The function I(z) = {1 * i 0 is called the unit jump function.
=z

= Theorem 4.11

Let {zy }nen be a countable subset of (a,b) and {c, }nen be a sequence such
oo

that ¢, > 0 for all n € N and Z ¢, converges. Then there exists a monotone

n=1
increasing function f on [a,b] such that

1. f(a) =0 and f(b) ch

2. f is continuous on [a,b] \ {z, : n € N}
3. f is right continuous at all x,,, i.e. f(x,+)= f(x,) for all n € N

4. f is discontinuous at each z, with f(z,) — f(zn—) = cn.

Proof. (1) We define f : [a,b] = R by f(x Z cpl(x — ) First, this funciton

n=1
is well-defined because 0 < ¢, I(z — x,) < z,, we have

chlx—xk §§n: ick
k=1 k=1

Since {s,(z)}nen is increasing and bounded above, f(x) is finite.

For monotonicity, since I(z — z,) < I(y — z,) for all x and y with < y, f is
monotonically increasing on [a, b]. Furthermore, since x,, > a for all n, I(a— :z:n) =

0 for all n. Therefore f(a) = 0. Also, since I(b— z,) =1 for all n, f(b) Z C-

(2) Fix p € [a,b], p # x,, for any n. Let E = {x,, : n € N}.

Suppose p is not a limit point of F. In this case, there exists a § > 0 such that
Ns(p)NE =0. Then I(x —xy) = I(p—ay) forallz € (p—06,p+9) and all k =1,
2, .... Thus f is constant on (p — d,p + J) and hence continuous.

o0
Suppose p is a limit point of E. Fix € > 0. Since the series Z c, converges, 3N
k=1
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o0
such that Z ¢ < € by Cauchy criterion. Choose § such that
k=N+1

0<d<min{lp—z,| : n=1,2,...,N}.

If z;, € Ns(p) N E, we have k > N. Suppose p < < p+ . Then I(p — x) =
I(x —xy) forall k=1, 2, ..., N. Furthermore, for any x > p, we always have

0<I(x—uak)—Ilp—ap) <1, forall keN

Therefore, for p < x < p+ 4,

0< flx)— f(p) < Z ar(I(z—ap) — I(p — ax)) < Z cp < €
k=N+1 k=N+1

Thus f is right continuous at p. Similarly, f is left continuous a p, and therefore
f is continuous at p.

(c¢) Fix an z,, € E. If z,, is an isolated point of E, then as above, 3§ > 0 such that
EN(zp,x, +8) = 0. Therefore f(y) = f(x,) for all y such that =, <y < z, + 4.
Thus f($n+) = f(xn)

Suppose x,, is a limit point of F. Fix € > 0. Choose a positive integer N such that
[oe]

Z ¢k < €. As above, 36 > 0 such that if zy € (x,, 2, +0) N E, then k > N.

k=N+1
Thus

0< fly) = flay) < Z cp <e forall ye (xn,x,+9).
k=N+1

Therefore f(x,+) = f(x,) and f is right continuous at each x,,.

(d) Suppose y < x,. If x, is an isolated point of E, 3§ > 0 such that (z, —
8, 2,) N E = (. Therefore, for all k # n, I(y — z) = I(z, — z) for all y such that
Ty —0 <y < Xy, and for all y < z,,

0=1(y—zp) <I(xyp —2x,) =1(0) = 1.

Therefore, f(z,) — f(y) = ¢y, for all y such that z, — 0 <y < .

Now suppose x, is a limit point of E. Fix € > 0, and choose N such that

Z ¢ < e. For this N, choose § > 0 such that if x € (z, — d,2,) N E
k=N+1
then k > N. Then for all y € [a,b] with x,, — 6 < y < x,,

oo
CnSf(In)*f(y)SCnJr Z cp < ¢y t €
k=N+1

Therefore, f(z,) — f(zn—) = cn. |
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Differentiation

5.1 The Derivative

= Definition 5.1: Derivative

Let f : I — R be a function. For fixed p € I, the derivative of f at p,
denoted f’(p), is defined by

T—p T—0p
provided the limit exists. If f/(p) is defined at p € I, we say that f is
differentiable ot p. If the derivative is defined at every point of a set
E C I, we say that f is differentiable on F.

If p is an interior point of I, then p + h € I for all sufficiently small h. If we set

x = p—+ h, then
flp+h)— f(p
1) }P—m ( 13, ( )’

provided that the limit exists.

The limit of the formula may only be defined at the left of p, or the right of p. In
these cases, we need to define the right and left derivatives.

— Definition 5.2: Right and Left Derivative

Let f : I — R be a function. If p € I is such that I N (p,00) # @, then the
right derivative of f at p, denoted f/ (p), is defined as

rov_ o fleth) - f(p)
filp) = lim ————",

provided the limit exists. Similarly, if p € I satisfies (—oo,p) NI # @, then
the left derivative of f at p, denoted f’ (p), is defined as

h—0— h ’

provided the limit exists.

Remark.

If p is an interior point of I, then f’(p) exists if and only if both f/ (p) and
fL(p) exist, and are equal. If p € I is the left (right) endpoint of I, then f’(p)
exists if and only if f (p) (f”(p)) exists. In this case, f'(p) = fi.(p) (f_(p)).
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d d d
We also use the Leibniz’s notations, — f(z), —f, or ¥ where y = f(x).
dx dz dx
Example 1
Let
T x>0
x) = |z| = .
§(@) = I {xm<0
Then
h| h
! = li Ll = lim - =1
i i
f1(0) = lim Il iy 2Ry

h—0- h h—0+ h

Thus f (0) and f/ (0) both exist, but not equal. Therefore f/(0) does not
exist.

= Theorem 5.1

If I € R is an interval and f : I — R is differentiable at p € I, then f is
continuous at p.

f@t) = f(p)

Proof. For t # p, %im ;
—p —p

exists and equals f'(p). Then

i (7(0) ~ 1) = fim (Z5 =L e - ) = 190 =0
t—p t—p p t—p
Thus }1_1)111) f(t) = f(p) and thus f is continuous at p. |

Exercise 11

Finish the proof when p is an endpoint of I.

= Theorem 5.2

Suppose f and g are real-valued functions defined on an interval I. If f
and g are differentiable at « € I, then f + g, fg, and f/g (if g(x) # 0) are
differentiable at  and

L (f+9)(z)=f'(z)+4(x)
2. (fg)'(x) = f(x)g(x) + f(2)g(x)

s (L) () = PSS, rodivaed gfo) 0.
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Proof. (1) Exercise.
(2) For h # 0,

(o)l + 1) ~ (o)) oo+ )~ g@)\ | (fzth) - fa)
) flasmy (L0 y (JEERZTE) ),

Since f is differentiable at x, }llir% f(x 4+ h) = f(x). Thus since each of the limits
—

exist,

o U9+~ (f9)@)

(fg) (x) = lim )
, . (g(x+h)—g(x)
~ fim -+ )y (L1 012)
+M@£%(ﬂx+2f@v

= f(x)g' () + g(x)f' ().

(3) It is sufficient to prove that (1/g)'(z) = —¢'(x)/(g(z))?, provided g(x) # 0.
The result will then follow with (2). If g(x) # 0, then since g is continuous at z,
g(x + h) # 0 for all sufficiently small h. Thus for sufficiently small and nonzero h,

amw+h»—umu»:_<Mx+m—guw 1
h h g(x)g(z+h)
Then
N (gt b)) — (1g(a)
(5) = m h
(gt —g@) | |
= b () I st
_ —g(x)
= W) -

= Theorem 5.3: Chain Rule

Suppose f is a real-valued function defined on an interval I and g is a real-
valued function defined on some interval J such that the range of f is con-
tained in J. If f is differentiable at = € I and g is differentiable at f(z), then
h = g o f is differentiable at = and

W () =g (f()f ().

Proof. For t € I, t # x, set Q(x) = (f(t) — f(z))/(t — ). Then by the definition,
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Q) = f'(x) as t — z. If we let u(t) = Q(t) — f(x), then u(t) — 0 as t — x.
Therefore, if f is differentiable at x, for ¢ # =z,

f(t)— f(z) = (t —2)(f'(z) + u(t)), where wu(t)—0ast— x.
Let y = f(x). Define v similarly with g, so that

9(s) —g(y) = (s —y)(¢'(y) +v(s)), where v(s) —0ass—y.

Let s = f(¢). Since f is continuous at z, s — y as t — x. We have

h(t) — h(z) = g(f(t)) — g(f(z))
= (f(t) = f(2))(g'(y) +v(s))
= (t —2)(f'(x) + u(®)(¢g'(y) +v(f(1))).
Therefore, for t # =,

h(t) — h(z)

t—=x

= (f"(=) +u(®))(g'(y) + v(f(1))).
Since v(f(t)) and wu(t) both have limit 0 as ¢t — x,

o ) = h()

t—x t—x

= f'(2)g'(y) = g'(f(@))f'(2). u

5.2 The Mean Value Theorem

Theorem 5.4: Rolle’s Theorem

Suppose that f : [a,b] — R is continuous on [a,d], differentiable on (a,b),
and f(a) = f(b). Then, ¢ € (a,b) such that f'(c) = 0.

Proof. Since f is continuous on the compact set [a,b], f has a maxumum and a
minimum at [a, b].

e If f is constant on [a,b], then f'(x) = 0 for V& € [a, ]].

o If f(t) > f(a) for some ¢, then f has a maximum at ¢ € (a,b). At this point,
we have f/(c) = 0.

o If f(t) < f(a) for some ¢, then f has a minimum at ¢ € (a,b), and f’(c) = 0.

Remark.

The continuity of f on [a, b] is requied.
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Remark.

Differentiability of f at a and b is not required. Consider f(z) = V4 — 22,
where x € [—2,2]. It is not differentiable at x = £2, but f/(0) = 0.

= Theorem 5.5: Mean Value Theorem

If f: [a,b] = R is continuous on [a,b] and differentiable on (a,b), then
Jc € (a,b) such that

Then g is continuous on [a,b], differentiable on (a,b), and g(a) = g(b) = 0. By
Rolle’s theorem, e € (a,b) such that ¢'(c) =0, i.e.

Example 2

Show that x
1+x

<Iln(l+z) <z forz > —1.

Solution Let f(z) = In(1 + x) where x € (—1,00). If z > 0, the MVT shows that
Je € (0, x) such that

In(1+2) = f(z) = f(0) = f'(c)z.

1 1 1

But f'(c) = d
ut f'(e) 1+can 1+x<1+c

< 1. Therefore,

gc <In(l42z)<aVz>0.
1+

If x € (—1,0), then by MVT again, 3¢ € (z,0) such that In(1 + z) = %ﬂ In
1
< and hence

thiscase,1<1+c T 1+x<ln(1+x)<xforv:z:€(—1,()).

Theorem 5.6: Cauchy’s Mean Value Theorem

Let f, g : [a,b] = R be continuous on [a, b] and differentiable on (a,b). Then
Jc € (a,b) such that
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Proof. Let h(z) = (f(b) — f(a))g(z) — (9(b) — g(a)) f(z). Since h is continuous on
[a,b] and differentiable on (a,b), it follows from Rolle’s theorem that 3¢ € (a,b)
such that h'(c) = 0. [ |

Applications

— Theorem 5.7

Let f: I — R be differentiable on an interval I.
o If f/(x) >0 for Va € I, then f is monotonically increasing on 1.
o If f/(z) <0 for Vz € I, then f is monotonically decreasing on I.
o If f/(x) > 0 for Va € I, then f is strictly increasing on 1.

(z)

o If f/(x) < 0 for Vx € I, then f is strictly decreasing on I.

Proof. Suppose z1 and zo € I with 1 < x9. By the MVT applied to [z1, 2],
de € (x1,x2) such that

f(x2) = f(x1) f'(c)(xg — 1)

If f'(c¢) >0, then f(xz2) > f(21). Thus, f is monotone increasing on I. The other
results follow similarly. |

Remark.

If f'(c) > 0 at one point ¢ € I, then 36 > 0 such that f(z) < f(c) for
Vr € (¢ —d,¢) and f(c) < f(x) for Vz € (¢,c + §). However, this does not
imply that f is increasing on (¢ — d, ¢+ 9).

Consider the function

1
z+zr?sin— z#0
T

flz) = .
0 z=0

This function satisfies f'(0) = 1 > 0, but f’ has both positive and negative
values in every neighborhood of 0.

Corollary

If f'(x) =0 for Vo € I, then f is constant on I.
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Theorem 5.8

If f'(¢) > 0 and f’ is continuous at ¢, then 3§ > 0 such that f'(x) > 0 for
Vx € (¢ — d,¢+ 6). In this case, f is strictly increasing on (¢ — 4, ¢+ 6).

If f has a local minimum at ¢, then is f decreasing to the left of ¢ and increasing
to the right of ¢? The answer is no. Consider the function

1
$4(2+sinx) x#0
0 z=0

fx) =

Then f has an absolute minimum at 0. But, f’ has both positive and negative
values in every neighborhood of 0.

= Theorem 5.9

Suppose that f : [a,b] — R is continuous on [a, b] and differentiable on (a, b).
If lim+ f'(x) exists, then f/ (a) exists and
T—ra

f_?_(a) = g;lggl+ f(x).

Proof. Let L = lim+ f'(x). Given € > 0, 35 € (0,b — a) such that

r—a
|f'(z) — L] <e foral z€(a,a+9).

Let h € (0,0), then f is continuous on [a,a + h] and differentiable on (a,a + h).
By the MVT,

fla+h) = fla) = f'(cn)h
for some ¢y, € (a,a + h). Therefore,

fla+h) - f(a)

Y —L|=|f'(ch) — L| <e. |

= Theorem 5.10: Intermediate Value Theorem of Derivatives

Suppose that f : I — R is differentiable on I. Let a, b € I be such that a < b.
If f'(a) # f'(b) and X € R is in between f'(a) and f/(b), then Jec € (a,b)
such that f'(c) = A

Note The theorem above does not require continuity of f.

Proof. Define g(x) = f(z) — Ax. Since g is continuous on [a,b], g attains an
absolute minimum at some point ¢ € [a,b]. Suppose that f'(a) < A < f(b). Then
g'(a) < 0 and ¢”(b) > 0. Thus, 3z; > a such that g(z1) < g(a) and Jza < b
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such that g(x2) < g(b). This implies that ¢ # a and ¢ # b, and hence ¢ € (a,b).
Moreover, since g is differentiable on [a, ], we have ¢'(c) =0, i.e. f/(c)=A. N

= Theorem 5.11: Inverse Function Theorem

Let f : I — R be differentiable on I with f'(z) # 0 for Vo € I. Then
f I — f[I] is invertible. Moreover, the inverse function f=1 : f[I] — I is
differentiable (and hence continuous) on f[I] and

-1y - or all =
(f )(f(x))—f,(x)f Nzel.

Proof. Since f’ # 0 on I, the IVT for derivatives shows that f’ is either positive
on I or negative on I. Assume f’ > 0 on I. Then f is strictly increasing on I, and
therefore f~1 exists and continuous on f[I].

To show that f~! is differentiable on f[I], let yo € f[I] and let {y,} C f[I] be any
sequence with v, — yo as n — 0o, and y,, # yo for all n € N. Then, Jz,, € I such
that f(x,) = yn. Since f~! is continuous, z,, — zo = f~1(yo) as n — oo. We
have

. f_l(yn)_f_1<y0) T Ly — X0 - 1
lim = lim = .
n—oo Yn — Yo n—oo f(xn) = f(zo)  f'(20)
Since yo and {y,} were arbitrary, we conclude the theorem. |

5.3 L'Hospital's Rule

— Definition 5.3: Diverge to co

Let ECR, f: E— R, and p € E'. We say that f diverges to co as x — p,
if VM € R, 3§ > 0 such that f(z) > M for all z € F with 0 < |z — p| < 4.

‘We use the notation
lim f(z) = 0.

T—p

We use a similar definition for —oo.
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= Theorem 5.12: L'Hospital’s Rule

Let —00o < a < b < oo and L € [—-o0,00]. Let f, g : (a,0) — R be
differentiable on (a,b) and ¢’ # 0 on (a,b). Suppose that

/
lim F'@) =
z—at g/(l‘)
If
1. lim f(zx)= lim g(z)=0or
r—at r—at
2. lim f(z)= lim g(x) = +oo.
z—at r—at
Then lim M =1L
z—a™t g(.fl))

The analogous results where x — b~ is also true.

Proof. Supposde (1) holds. We first prove the case where a is finite. Let {x,,} be
a sequence in (a,b) with z,, — a and z,, # a for all n. Setting f(a) = g(a) =0
gives f and g continuous at a. Thus for each n € N| there exists ¢,, between a and
x,, such that

(f(@n) = fla)g'(cn) = (g9(zn) = g(a))f' (cn),

or

Since ¢'(z) # 0 for all z € (a,b), g(z,) # g(a) for all n. As n — oo, ¢, — a™.

Thus
f@) o Pled) o fa)

li =1 =1
nooo g(n) oo g'lcn) | woat g(2)

Since the above holds for every sequence {z,} with z, — a™, the result follows.

Suppose a = —oo, and let * = —1/t. Then as t — 07, # — —oco. Define
the functions ¢(t) and (t) on (0,¢) for some ¢ > 0 by ¢(t) = f(—1/t) and
¥(t) = g(—=1/t). Then

SO _ S
) e e g

with lim ¢(t) = lim ¢(t) = 0. Thus
t—0+

t—0t

lim ﬂ: lim M:L.
e=—o0 g(x) =0+ (1)
Now suppose (2) holds, i.e. lim+ g(x) = oco. The case where g(x) — —oo is treated
r—a
similarly. Suppose first that —oco < L < 0o, and S € R satisfies 8 > L. Choose r
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such that L < r < B. Since
!
lim F'@)
r—at gl(.'E)

there exists ¢; € (a,b) such that f'(¢)/¢'(¢) < r for all ¢ € (a,c1).

<r,

Fix y € (a,c1). Since g(z) — oo as ¥ — a™, there exists ca € (a,y) such that
g(x) > g(y) and g(x) > 0 for all « € (a,c2). Let x € (a,c2) be arbitrary. Then by
the generalized MVT, there exists ¢ € (z,y) such that

f@) = fly) _ ')

= <r.

g(x) —g(y) 9

Since g(z) > g(y) and g(x) > 0, we have (g(x) — g(y))/g(x) > 0. Multiplying this
gives

flz) = fy) <T(1_9(y)>

g(x) g(x)
@) _ W), (W
o@ <90 " (1 g<:c>)

for all z € (a, ). Now for fixed y, since g(x) — oo,

) )
z—>I¢111+ g(x) o 271—>(lJr g(x) O

W B (e
Jm g+ (1= 55) =<

Therefore

Thus there exists ¢3 € (a, c2) such that

1) (o)
o)+ <1 g<x>)<5

for all z € (a,c3). Thus f(z)/g(x) < B for all z € (a,x3).

If L = —o0, then for any 8 € R, there exists c3 such that the formula above holds
f(x)

for all x € (a, c3). Thus by definition, lim ——= = —o0
r—at g(x)
If L is finite, then given ¢ > 0, by taking 5 = L + ¢, there exists c3 such that

f(z)/g(x) < L+ e for all z € (a,c3).
Suppose —oo < L < oco. Let o € R, @ < L be arbitrary. Then an argument

similar to the above gives the existence of ¢4 € (a,b) such that f(z)/g(x) > « for
all z € (a, ).

If L = oo, then this implies that lim M =00
z—a™t g(l‘)

If L is finite, taking o = L—e gives the existence of a ¢ such that f(z)/g(z) > L—e¢
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for all € (a,cy). Combining, we have

L—-e< /(@) < L+e
g(x)
and therefore
TGO n
z—a™t g($)
Example 3
In(1 _1

fm BOED g, T

x—0+ x z—0+ 1

Example 4

. l—cosz . sinx . cosx 1

llmf:llm—:hm = —.

x—0 x z—0 2x z—0 2 2

Example 5

e—l/w e—l/w
If we apply L’Hospital’s rule to lim , then we get lim 5— Instead,
z—0t z—0t X
if we take t = 1/x, then we get
—1/z t 1
lime = lim — = lim — =0.
=0+ T t—oo et t—oo et

5.4 Newton’'s Method

Newton-Rhapson method is a root-finding algorithm producing approximations to
the roots of f(x) = 0.

We first state the bisection method. Take some a and b, and if f(a)f(b) < 0, take
c=(a+b)/2.

e If f(¢) =0, then we are done.
o If f(c) # 0, then either f(a)f(c) <0, and f(c)f(b) <O0.

We repeat the process. This algorithm is used to approximate the root, but it’s
slow.

For the Newton-Rhapson method, assume that f(a)f(b) < 0 and f’ # 0 on [a, b].
Let ¢ be an initial guess. Then the tangent line

y = fler) = f'(cr)(z — c1)

fle1)
f'(e1)

crosses the z-axis at ¢co = ¢; —

. We repeat the process.
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Lemma

Let f : [a,b] — R be such that f’ is continuous on [a,b] and f” exists on
(a,b). Let xq € [a,b]. Then for any = € [a,b], 3¢ between zy and x such that

£(&) = fw) + /(@)@ = w0) + 54" (O)w = 20)*
Proof. Fix x € [a,b]. If © = x¢, then any ¢ works. Otherwise, 3o € R such that
f(x) = f(zo) + f'(x0)(x — x0) + az — w0)*.
Define g : [a,b] — R by

g(t) = f(t) = (f(wo) + f'(wo)(t — z0) + ault — x0)?).

We may assume x > xo. Since ¢ is continuous and differentiable on [zg,z] and
g(xzo) = g(z) = 0, it follows from Rolle’s theorem that Je; € (zg,x) such that
g'(c) =0. But

G = F/() — ['(wo) — 2a(t - z0).
Since g is continuous on [xg, ¢], differentiable on (zg, ¢), and ¢'(z¢) =0 = ¢'(c), by
Rolle’s theorem again, 3¢ € (xo, ¢) such that ¢”’(¢) = 0. Therefore, f({) —2a =0,

andaz%f”((). |

= Theorem 5.13: Newton's Method

Let f : [a,b] = R be twice differentiable on [a, b]. Suppose that f(a)f(b) <0
and that Im, M > 0 such that |f’| > m and |f”| < M. Then there exists a
subinterval I C [a,b] and a zero ¢ € I such that f(c) = 0.

For all ¢; € I, the sequence {c,} defined by
flen)

n — Cn — N
ot = ) " C

isin I, and lim,,_,~ ¢, = ¢. Furthermore,

M
lent1 —¢| < %|cn — |

Proof. Since f(a)f(b) < 0 and f’ # 0 on [a,b], f has exactly one zero ¢ € (a,b).
Let zg € [a,b]. By the lemma, 3¢ between ¢ and z¢ such that

0= f(e) = f(mo) + J'(ao)(e — o) + 55" (C)(e ~ o),

or

~ (o) = f@o)(e — 20) + 3 (C)(e — o)
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f(2o)
F(wo) Then

Define z1 = xg —

x1 =20+ (¢ — ) + 1 () (¢ — z0)?

2 f'(wo)

and hence

L) M

== S )] = 2m

2
Choose § > 0 sufficiently small so that ¢ < ﬁm and I = [c—d,c+ 0] C [a,b]. If

flen)
f'(cn)

¢n € I, then |c — ¢,| < §. Thus, if ¢pp1 = ¢y — , then

M
|cn+1 = C| < 762 < 57
2m

i.e. ¢p41 € I. This means that if ¢; € I, then ¢, € I for all n € N. Moreover, since
M M n
lent1 — ] < %(ﬂcn —c << (2m5) ler — ¢f

M
and 2—5 < 1, we conclude that ¢, — c. |
m
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