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Recall the definition of compact sets discussed:

Definition 0.1: Compact Sets

A set S ⊂ R is compact if every sequence in S has a convergent subsequence
with limit in S.

This definition is enough for R, but there is a generalized definition.

1
Metric Spaces

Compact sets are generally defined on metric spaces. What is this?

Definition 1.1: Metric Function

Let X be a nonempty set. A function d : X × X → R is called a metric
function on X if

• d(x, y) > 0 for ∀x, y ∈ X with x ̸= y

• d(x, y) = 0 ⇔ x = y

• d(x, y) = d(y, x) for ∀x, y ∈ X

• d(x, y) ≤ d(x, z) + d(z, y) for ∀x, y, z ∈ X.

Definition 1.2: Metric Space

A nonempty set X with a metric function d : X ×X → R is called a metric
space.
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Example 1
R is a metric space with a metric function d(x, y) = |x− y|. We claim that the
metric d(x, y) = |x− y| satisfies the four axioms of a metric function.

• If x, y ∈ R with x ̸= y, then |x− y| > 0.

• |x− x| = 0, and if |x− y| = 0 then x = y

• For all x, y ∈ R, |x− y| = |y − x|.

• For all x, y, z ∈ R, |x− y| ≤ |x− z|+ |z − y| (triangle inequality).

Therefore, R with d(x, y) = |x− y| is a metric space.

Example 2
Let X be the set of all bounded real-valued functions on A(̸= ∅). For f , g ∈ X,
we define d(f, g) = sup {|f(x)− g(x)| : x ∈ A}. Since

• 0 ≤ |f(x)− g(x)| ≤ |f(x)|+ |g(x)| ≤ 2M for all x ∈ A

• d(f, g) = 0 ⇔ f = g since |f(x)− g(x)| ≤ d(f, g) for ∀x ∈ A

• d(f, g) = d(g, f)

• sup{|f(x) − g(x)| : x ∈ A} = sup{|f(x) − h(x) + h(x) − g(x)| : x ∈
A} ≤ sup{|f(x) − h(x)| : x ∈ A} + sup{|h(x) − g(x)| : x ∈ A} =

d(f, h) + d(h, g),

d is a metric on X.

With this definition, we can generalize what we have done on R to a metric space.

Definition 1.3: Neighborhood

Let (X, d) be a metric space. For ϵ > 0 and p ∈ X, the set

Nϵ(p) = {x ∈ X | d(p, x) < ϵ}

is called an ϵ-neighborhood of p.
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2
Open and Closed Sets

From now on, denote X as a metric space. The proofs for results are omitted if
they have the exact same proof with the case X = R.

Definition 2.1: Interior Point

Let E ⊂ X be a set. A point p is an interior point of E if for some ϵ > 0,
the ϵ-neighborhood of p is entirely in E. That is, Nϵ(p) ⊂ E.

Definition 2.2: Isolated Point

Let E ⊂ X be a set. A point p is an isolated point of E if for some ϵ > 0, p
is the only point of E in the ϵ-neighborhood of p. That is, Nϵ(p) ∩E = {p}.

Definition 2.3: Boundary Point

Let E ⊂ X be a set. A point p is a boundary point of E if any neighborhood
of c contains points from both E and E∁. That is, Nϵ(p) ∩ E ̸= ∅ and
Nϵ(p) ∩ E∁ ̸= ∅.

Definition 2.4: Limit Point

Let E ⊂ X be a set. A point p is a limit point of E if any ϵ-neighborhood
of p contains a point of E other than p. That is, Nϵ(p) ∩ (E \ {p}) ̸= ∅.

Proposition.
p is a limit point of E if and only if there is a sequence of elements in E \ {p}
converging to p.

Proof. (⇐) Suppose the sequence {xn} of elements of E\{p} converges to p. Then
∀ϵ > 0, ∃N such that ∀n ≥ N , d(xn, p) < ϵ. Thus p is a limit point of E.

(⇒) If p is a limit point of E, choose xn ∈ S \ {c} with d(xn, p) < 1/n, then
xn → p. ■

Definition 2.5: Open and Closed Sets

A set S ⊂ R is open if every point of S is an interior point. A set S ⊂ R is
closed if it contains all of its limit points.

Note that the definitions coincide to the definitions discussed in class if we set
X = R.
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Theorem 2.1

• A complement of an open set is closed.

• A complement of a closed set if open.

Theorem 2.2

Let (X, d) be a metric space.

1. If {Oα}α∈A is a collection of open sets of X, then
⋃
α∈A

Oα is open. That

is, an arbitrary union of open sets is open.

2. If {O1, · · · , On} is a finite collection of open sets of X, then
n⋂

j=1

Oj is

open. That is, a finite intersection of open sets is open.

Proof. (1) We may assume that
⋃
Oα ̸= ∅. Let p ∈

⋃
α∈A

Oα, then p ∈ Oα for some

α ∈ A. Since Oα is open, ∃ϵ > 0 such that Nϵ(p) ⊆ Oα ⊆
⋃

Oα. Thus, p is an
interior point of

⋃
α∈A

Oα.

(2) Assume
n⋂

j=1

Oj ̸= ∅. Let p ∈
n⋂

j=1

Oj . Then p ∈ Oj for ∀j = 1, 2, . . . , n. Since

each Oj is open, ∃ϵj > 0 such that Nϵj (p) ⊆ Oj . Now, let ϵ = min{ϵ1, ϵ2, · · · , ϵj} >

0, then Nϵ(p) ⊆ Nϵj (p) ⊆ Oj for all j. Therefore, Nϵ(p) ⊆
n⋂

j=1

Oj , and p is an

interior point. ■

Corollary

Let (X, d) be a metric space.

1. If {O1, · · · , On} is a finite collection of closed sets of X, then
n⋃

j=1

Oj is

closed. That is, a finite union of closed sets is closed.

2. If {Oα}α∈A is a collection of closed sets of X, then
⋂
α∈A

Oα is closed.

That is, an arbitrary intersection of open sets is open.
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3
Compact Sets

Now, we state the general definition of compact sets.

Definition 3.1: Open Cover

Let X be a metric space, and E ⊂ X. A collection {Oα}α∈A of open subsets
of X is an open cover of E if

E ⊆
⋃
α∈A

Oα.

Definition 3.2: Compact Set

Let X be a metric space. A set K ⊆ X is compact if every open cover of
K has a finite subcover of K.

That is, if {Oα} is an open cover of K, K is compact if ∃α1, . . . , αn ∈ A such
that

K ⊆
n⋃

j=1

Oαj .

Example 3
Every finite set is compact.

Example 4
I = (0, 1) is not compact. Consider On = (0, n

n+1 ) for n ∈ N.. Then, {On}n∈N

is an open cover of I. Indeed, if x ∈ I, then ∃n0 ∈ N such that 1
n0+1 < 1 − x

by the Archedian property. Thus,

x ∈ On0
⊆

∞⋃
n=1

On.

But, no finite subcover can cover I. Assume to the contrary that a finite
subcover {On1

, On2
, . . . , Onk

} covers I. Let N = max{n1, · · · , nk}, then we
have

(0, 1) ⊆
k⋃

j=1

Onj
=

(
0,

N

N + 1

)
,

which gives a contradiction.

5



Compact Sets Joshua Im (April 29, 2025)

4
Properties of Compact Sets

Theorem 4.1: Heine-Borel

Every closed and bounded interval [a, b] is compact.

Proof. Let U = {Uα}α∈A be an open cover of [a, b]. Define

E = {r ∈ [a, b], [a, r] is covered by a finite subcover of U} .

Clearly, E is nonempty and bounded. Thus ∃γ = supE in R by the least upper
bound property.

Claim. γ = b.

Suppose that γ < b. We will find a contradiction by constructing s ∈ E such
that γ < s. Since γ ∈ Uα for some open set Uα ∈ U , ∃ϵ > 0 such that Nϵ(γ) =

(γ − ϵ, γ + ϵ) ⊆ Uα. Since γ − ϵ is not an upper bound of E, ∃t ∈ E such that
γ − ϵ < t < γ. Thus, [0, t] is covered by finitely many sets

Uα1
, Uα2

, · · · , Uαn
.

Now, choose any s ∈ (γ, γ + ϵ) such that s < b. Then,

[a, s] ⊆

 n⋃
j=1

Uαj

 ∪ Uα,

i.e. s ∈ E. Also since γ ∈ E=, so this completes the proof. ■

Note that if X = R, closed and bounded is equivalent to compact (so a compact set
is also closed and bounded). In a general metric space, every closed and bounded
set is compact, but not every compact set is closed and bounded.

Then, is this definition equivalent to the sequential definition for X = R? Yes!

Theorem 4.2

Let K ⊂ R. Then K is compact if and only if every sequence in K has a
subsequence that converges to a point in K.

Proof. (⇒) Let {pn} be a sequence in K, and let E = {pn | n = 1, 2, · · · }. If E
is finite, then there exists a point p ∈ E and a sequence {nk} with n1 < n2 < · · ·
such that

pn1 = pn2 = · · · = p.

The sequence {pnk
} obviously converges to p ∈ K.
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If E is infinite, then E has a limit point p ∈ K. Choose n1 such that d(p, pn1
) < 1.

Having chosen n1, . . . , nk−1, choose an integer nk > nk−1 so that

d(p, pnk
) <

1

k
.

Such an integer nk exists since every neighborhood of p contains infinitely many
points of E. The sequence {pnk

} is a subsequence of {pn} converging to p ∈ K.

(⇐): Let p be a limit point of K. Then there exists a sequence of distinct points
in K converging to p. Since each of its subsequence converge to p, hence p ∈ K,
so K is closed.

Assume K is not bounded. For each k ∈ N, choose a point pk ∈ K such that
d(pk, p0) ≥ k for some fixed p0 ∈ X. Then the sequence {pk} satisfies d(pk, p0) →
∞, so it cannot have any convergent subsequence (since convergent sequences are
bounded), a contradiction.

Since K is closed and bounded, it is compact. ■

Theorem 4.3

Let X be a metric space. If K ⊆ X is compact, then

1. K is closed

2. If F ⊆ K and F is closed, then F is compact.

Proof. (1) It is enough to show that K∁ is open. Let p ∈ K∁. For each q ∈ K, Let
ϵq = d(p, q)/2. Then, Nϵq (p) ∩Nϵq (q) = ∅. Since {Nϵq (q)}q∈K is an open cover of
K, there exists q1, q2, . . . , qn such that

K ⊆
n⋃

j=1

Nϵqj
(qj).

Let ϵ = min{q1, · · · , qn}. Then, Nϵ(p) does not intersect with Nϵqj
(qj) for all

j = 1, . . . , n. Thus, Nϵ(p) ⊆ K∁, which proves that K is closed.

(2) Let {Oα}α∈A be an open cover of F . Then,

{Oα}α∈A ∪ F ∁

is an open cover of K. Since K is compact, ∃ a finite subcollection of {Oα}α∈A∪F ∁

containing K, which also contains of F . ■

Corollary

If F is closed and K is compact, then F ∩K is compact.
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The previous theorem gives a simple proof for generalized Cantor’s intersection
property.

Corollary : Cantor’s Intersection Property

If K1 ⊃ K2 ⊃ . . . is a nested family of nonempty compact sets, then their

intersection K =

∞⋂
n=1

Kn is nonempty and compact.

Proof. Since K is a closed subset of a compact set Kn, it is compact. ■

Theorem 4.4

The continuous image of a compact set is compact.

Proof. Let f : A → f(A) be a continuous function on a compact set A. For any
sequence {yn}, we can find a corresponding sequence {xn} such that f(xn) = yn
for all n ∈ N. Since there exist a convergent subsequence {xnk

} converging to
x ∈ A, the subsequence {ynk

} converges to y = f(x) ∈ f(A). Therefore, every
sequence in f(A) has a subsequence converging to a point in f(A), and f(A) is
compact. ■

Remark.
If X = R, then the continuous image of a closed set need not be closed.

Remark.
If X = R, then the continuous image of a bounded set need not be bounded.

This gives the Extreme value theorem.

Corollary : Extreme Value Theorem

Let K ∈ R be a compact set. If f : K → R, then f(x) attains its minimum
and maximum value on K.
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