Compact Sets

MATH 409 HNR Analysis on the Real Line, Texas A&M University

Joshua Im

April 29, 2025

Recall the definition of compact sets discussed:

Definition 0.1: Compact Sets

A set $S \subset \mathbb{R}$ is **compact** if every sequence in S has a convergent subsequence with limit in S.

This definition is enough for $\mathbb R,$ but there is a generalized definition.

Metric Spaces

1

Compact sets are generally defined on *metric spaces*. What is this?

Definition 1.1: Metric Function

Let X be a nonempty set. A function $d:X\times X\to \mathbb{R}$ is called a **metric function** on X if

- d(x,y) > 0 for $\forall x, y \in X$ with $x \neq y$
- $d(x,y) = 0 \Leftrightarrow x = y$
- d(x,y) = d(y,x) for $\forall x, y \in X$
- $d(x,y) \le d(x,z) + d(z,y)$ for $\forall x, y, z \in X$.

Definition 1.2: Metric Space

A nonempty set X with a metric function $d:X\times X\to \mathbb{R}$ is called a metric space.

Example 1

 \mathbb{R} is a metric space with a metric function d(x,y) = |x-y|. We claim that the metric d(x, y) = |x - y| satisfies the four axioms of a metric function.

- If $x, y \in \mathbb{R}$ with $x \neq y$, then |x y| > 0.
- |x x| = 0, and if |x y| = 0 then x = y
 For all x, y ∈ ℝ, |x y| = |y x|.
- For all $x, y, z \in \mathbb{R}$, $|x y| \le |x z| + |z y|$ (triangle inequality).

Therefore, \mathbb{R} with d(x, y) = |x - y| is a metric space.

Example 2

Let X be the set of all bounded real-valued functions on $A \neq \emptyset$. For $f, g \in X$, we define $d(f,g) = \sup \{ |f(x) - g(x)| : x \in A \}$. Since

- $0 \le |f(x) g(x)| \le |f(x)| + |g(x)| \le 2M$ for all $x \in A$
- $d(f,g) = 0 \Leftrightarrow f = g$ since $|f(x) g(x)| \le d(f,g)$ for $\forall x \in A$
- d(f,g) = d(g,f)
- $\sup\{|f(x) g(x)| : x \in A\} = \sup\{|f(x) h(x) + h(x) g(x)| : x \in A\}$ $A\} \le \sup\{|f(x) - h(x)| : x \in A\} + \sup\{|h(x) - g(x)| : x \in A\} =$ d(f,h) + d(h,g),

d is a metric on X.

With this definition, we can generalize what we have done on \mathbb{R} to a metric space.

Definition 1.3: Neighborhood

Let (X, d) be a metric space. For $\epsilon > 0$ and $p \in X$, the set

$$N_{\epsilon}(p) = \{ x \in X \mid d(p, x) < \epsilon \}$$

is called an ϵ -neighborhood of p.

Open and Closed Sets

From now on, denote X as a metric space. The proofs for results are omitted if they have the exact same proof with the case $X = \mathbb{R}$.

Definition 2.1: Interior Point

Let $E \subset X$ be a set. A point p is an **interior point** of E if for some $\epsilon > 0$, the ϵ -neighborhood of p is entirely in E. That is, $N_{\epsilon}(p) \subset E$.

Definition 2.2: Isolated Point

Let $E \subset X$ be a set. A point p is an **isolated point** of E if for some $\epsilon > 0, p$ is the only point of E in the ϵ -neighborhood of p. That is, $N_{\epsilon}(p) \cap E = \{p\}$.

Definition 2.3: Boundary Point

Let $E \subset X$ be a set. A point p is a **boundary point** of E if any neighborhood of c contains points from both E and E^{\complement} . That is, $N_{\epsilon}(p) \cap E \neq \emptyset$ and $N_{\epsilon}(p) \cap E^{\complement} \neq \emptyset$.

Definition 2.4: Limit Point

Let $E \subset X$ be a set. A point p is a **limit point** of E if any ϵ -neighborhood of p contains a point of E other than p. That is, $N_{\epsilon}(p) \cap (E \setminus \{p\}) \neq \emptyset$.

Proposition.

p is a limit point of E if and only if there is a sequence of elements in $E \setminus \{p\}$ converging to p.

Proof. (\Leftarrow) Suppose the sequence $\{x_n\}$ of elements of $E \setminus \{p\}$ converges to p. Then $\forall \epsilon > 0, \exists N \text{ such that } \forall n \ge N, d(x_n, p) < \epsilon$. Thus p is a limit point of E.

(⇒) If p is a limit point of E, choose $x_n \in S \setminus \{c\}$ with $d(x_n, p) < 1/n$, then $x_n \to p$.

Definition 2.5: Open and Closed Sets

A set $S \subset \mathbb{R}$ is **open** if every point of S is an interior point. A set $S \subset \mathbb{R}$ is **closed** if it contains all of its limit points.

Note that the definitions coincide to the definitions discussed in class if we set $X = \mathbb{R}$.

Theorem 2.1

- A complement of an open set is closed.
- A complement of a closed set if open.

Theorem 2.2

Let (X, d) be a metric space.

1. If $\{O_{\alpha}\}_{\alpha \in A}$ is a collection of open sets of X, then $\bigcup_{\alpha \in A} O_{\alpha}$ is open. That is, an arbitrary union of open sets is open.

2. If $\{O_1, \dots, O_n\}$ is a finite collection of open sets of X, then $\bigcap_{j=1}^n O_j$ is open. That is, a finite intersection of open sets is open.

Proof. (1) We may assume that $\bigcup O_{\alpha} \neq \emptyset$. Let $p \in \bigcup_{\alpha \in A} O_{\alpha}$, then $p \in O_{\alpha}$ for some $\alpha \in A$. Since O_{α} is open, $\exists \epsilon > 0$ such that $N_{\epsilon}(p) \subseteq O_{\alpha} \subseteq \bigcup O_{\alpha}$. Thus, p is an interior point of $\bigcup_{\alpha \in A} O_{\alpha}$.

(2) Assume $\bigcap_{j=1}^{n} O_j \neq \emptyset$. Let $p \in \bigcap_{j=1}^{n} O_j$. Then $p \in O_j$ for $\forall j = 1, 2, ..., n$. Since each O_j is open, $\exists \epsilon_j > 0$ such that $N_{\epsilon_j}(p) \subseteq O_j$. Now, let $\epsilon = \min\{\epsilon_1, \epsilon_2, \cdots, \epsilon_j\} >$ 0, then $N_{\epsilon}(p) \subseteq N_{\epsilon_j}(p) \subseteq O_j$ for all j. Therefore, $N_{\epsilon}(p) \subseteq \bigcap_{j=1}^{n} O_j$, and p is an interior point.

Corollary

Let (X, d) be a metric space.

- 1. If $\{O_1, \dots, O_n\}$ is a finite collection of closed sets of X, then $\bigcup_{j=1} O_j$ is closed. That is, a finite union of closed sets is closed.
- 2. If $\{O_{\alpha}\}_{\alpha \in A}$ is a collection of closed sets of X, then $\bigcap_{\alpha \in A} O_{\alpha}$ is closed. That is, an arbitrary intersection of open sets is open.

Compact Sets

Now, we state the general definition of compact sets.

Definition 3.1: Open Cover

Let X be a metric space, and $E \subset X$. A collection $\{O_{\alpha}\}_{\alpha \in A}$ of open subsets of X is an **open cover** of E if

$$E \subseteq \bigcup_{\alpha \in A} O_{\alpha}.$$

Definition 3.2: Compact Set

Let X be a metric space. A set $K \subseteq X$ is **compact** if every open cover of K has a finite subcover of K.

That is, if $\{O_{\alpha}\}$ is an open cover of K, K is compact if $\exists \alpha_1, \ldots, \alpha_n \in A$ such that

$$K \subseteq \bigcup_{j=1}^n O_{\alpha_j}.$$

Example 3

Every finite set is compact.

Example 4

I = (0, 1) is not compact. Consider $O_n = (0, \frac{n}{n+1})$ for $n \in \mathbb{N}$.. Then, $\{O_n\}_{n \in \mathbb{N}}$ is an open cover of I. Indeed, if $x \in I$, then $\exists n_0 \in \mathbb{N}$ such that $\frac{1}{n_0+1} < 1 - x$ by the Archedian property. Thus,

$$x\in O_{n_0}\subseteq \bigcup_{n=1}^\infty O_n.$$

But, no finite subcover can cover I. Assume to the contrary that a finite subcover $\{O_{n_1}, O_{n_2}, \ldots, O_{n_k}\}$ covers I. Let $N = \max\{n_1, \cdots, n_k\}$, then we have

$$(0,1) \subseteq \bigcup_{j=1}^{k} O_{n_j} = \left(0, \frac{N}{N+1}\right),$$

which gives a contradiction.

4 Properties of Compact Sets

Theorem 4.1: Heine-Borel -

Every closed and bounded interval [a, b] is compact.

Proof. Let $\mathcal{U} = \{U_{\alpha}\}_{\alpha \in A}$ be an open cover of [a, b]. Define

 $E = \{r \in [a, b], [a, r] \text{ is covered by a finite subcover of } \mathcal{U}\}.$

Clearly, E is nonempty and bounded. Thus $\exists \gamma = \sup E$ in \mathbb{R} by the least upper bound property.

Claim.
$$\gamma = b$$

Suppose that $\gamma < b$. We will find a contradiction by constructing $s \in E$ such that $\gamma < s$. Since $\gamma \in U_{\alpha}$ for some open set $U_{\alpha} \in \mathcal{U}$, $\exists \epsilon > 0$ such that $N_{\epsilon}(\gamma) = (\gamma - \epsilon, \gamma + \epsilon) \subseteq U_{\alpha}$. Since $\gamma - \epsilon$ is not an upper bound of E, $\exists t \in E$ such that $\gamma - \epsilon < t < \gamma$. Thus, [0, t] is covered by finitely many sets

$$U_{\alpha_1}, U_{\alpha_2}, \cdots, U_{\alpha_n}$$

Now, choose any $s \in (\gamma, \gamma + \epsilon)$ such that s < b. Then,

$$[a,s]\subseteq \left(\bigcup_{j=1}^n U_{\alpha_j}\right)\cup U_\alpha,$$

i.e. $s \in E$. Also since $\gamma \in E=$, so this completes the proof.

Note that if $X = \mathbb{R}$, closed and bounded is equivalent to compact (so a compact set is also closed and bounded). In a general metric space, every closed and bounded set is compact, but not every compact set is closed and bounded.

Then, is this definition equivalent to the sequential definition for $X = \mathbb{R}$? Yes!

Theorem 4.2

Let $K \subset \mathbb{R}$. Then K is compact if and only if every sequence in K has a subsequence that converges to a point in K.

Proof. (\Rightarrow) Let $\{p_n\}$ be a sequence in K, and let $E = \{p_n \mid n = 1, 2, \dots\}$. If E is finite, then there exists a point $p \in E$ and a sequence $\{n_k\}$ with $n_1 < n_2 < \cdots$ such that

$$p_{n_1} = p_{n_2} = \dots = p.$$

The sequence $\{p_{n_k}\}$ obviously converges to $p \in K$.

If E is infinite, then E has a limit point $p \in K$. Choose n_1 such that $d(p, p_{n_1}) < 1$. Having chosen n_1, \ldots, n_{k-1} , choose an integer $n_k > n_{k-1}$ so that

$$d(p, p_{n_k}) < \frac{1}{k}.$$

Such an integer n_k exists since every neighborhood of p contains infinitely many points of E. The sequence $\{p_{n_k}\}$ is a subsequence of $\{p_n\}$ converging to $p \in K$.

(\Leftarrow): Let p be a limit point of K. Then there exists a sequence of distinct points in K converging to p. Since each of its subsequence converge to p, hence $p \in K$, so K is closed.

Assume K is not bounded. For each $k \in \mathbb{N}$, choose a point $p_k \in K$ such that $d(p_k, p_0) \geq k$ for some fixed $p_0 \in X$. Then the sequence $\{p_k\}$ satisfies $d(p_k, p_0) \rightarrow \infty$, so it cannot have any convergent subsequence (since convergent sequences are bounded), a contradiction.

Since K is closed and bounded, it is compact.

Theorem 4.3

Let X be a metric space. If $K \subseteq X$ is compact, then

1. K is closed

2. If $F \subseteq K$ and F is closed, then F is compact.

Proof. (1) It is enough to show that K^{\complement} is open. Let $p \in K^{\complement}$. For each $q \in K$, Let $\epsilon_q = d(p,q)/2$. Then, $N_{\epsilon_q}(p) \cap N_{\epsilon_q}(q) = \emptyset$. Since $\{N_{\epsilon_q}(q)\}_{q \in K}$ is an open cover of K, there exists q_1, q_2, \ldots, q_n such that

$$K \subseteq \bigcup_{j=1}^{n} N_{\epsilon_{q_j}}(q_j).$$

Let $\epsilon = \min\{q_1, \dots, q_n\}$. Then, $N_{\epsilon}(p)$ does not intersect with $N_{\epsilon_{q_j}}(q_j)$ for all $j = 1, \dots, n$. Thus, $N_{\epsilon}(p) \subseteq K^{\complement}$, which proves that K is closed.

(2) Let $\{O_{\alpha}\}_{\alpha \in A}$ be an open cover of F. Then,

$$\{O_{\alpha}\}_{\alpha\in A}\cup F^{\complement}$$

is an open cover of K. Since K is compact, \exists a finite subcollection of $\{O_{\alpha}\}_{\alpha \in A} \cup F^{\complement}$ containing K, which also contains of F.

Corollary

If F is closed and K is compact, then $F \cap K$ is compact.

The previous theorem gives a simple proof for generalized Cantor's intersection property.

Corollary : Cantor's Intersection Property

If $K_1 \supset K_2 \supset \ldots$ is a nested family of nonempty compact sets, then their intersection $K = \bigcap_{n=1}^{\infty} K_n$ is nonempty and compact.

Proof. Since K is a closed subset of a compact set K_n , it is compact.

Theorem 4.4

The continuous image of a compact set is compact.

Proof. Let $f : A \to f(A)$ be a continuous function on a compact set A. For any sequence $\{y_n\}$, we can find a corresponding sequence $\{x_n\}$ such that $f(x_n) = y_n$ for all $n \in \mathbb{N}$. Since there exist a convergent subsequence $\{x_{n_k}\}$ converging to $x \in A$, the subsequence $\{y_{n_k}\}$ converges to $y = f(x) \in f(A)$. Therefore, every sequence in f(A) has a subsequence converging to a point in f(A), and f(A) is compact.

Remark.

If $X = \mathbb{R}$, then the continuous image of a closed set need not be closed.

Remark.

If $X = \mathbb{R}$, then the continuous image of a bounded set need not be bounded.

This gives the Extreme value theorem.

Corollary : Extreme Value Theorem

Let $K \in \mathbb{R}$ be a compact set. If $f : K \to \mathbb{R}$, then f(x) attains its minimum and maximum value on K.